Total No. of Questions – [3]

Total No. of Printed Pages: 4

Paper Code - UM9 - 102 (T1)

OCTOBER 2019 / IN-SEM (T1)

F. Y. B.TECH. (COMMON) (SEMESTER - I)

COURSE NAME: BASIC ELECTRICAL ENGINEERING

COURSE CODE: ET 10182A

MODEL ANSWER AND MARKING SCHEME

(PATTERN 2018)

Time: [1 Hour]

[Max. Marks: 20]

- (*) Instructions to candidates:
- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed.
- 4) Use suitable data where ever required.
- 5) Assume suitable data, if required.
- Q 1) Attempt any two.
 - a) Current through 3Ω resistance can be found using Superposition theorem

Fig.1

Considering 5A current source acting alone. 20 V voltage source is shorted. Applying current divison rule,

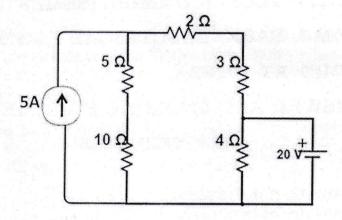
 $I_{3\Omega}$ (5 A current source alone) = (5*15)/(15+2+3) = 3.75 A downwards 1M

Considering 20 V voltage source acting alone. 5A current source is open circuited.

Total current deivered by 20 V voltage source is

 $I_T = (20)/[(10+5+2+3)II(4)] = 20*24/80 = 6 A$

Applying current divison rule,


 $I_{3\Omega'}$ (20 V voltage source alone) = $(6^{*}4)/(10+5+2+3+4) = 1$ A upwards 2M

Total current through 3Ω resistance is given as

 $I_{3\Omega} = I_{3\Omega}$ (5 A current source alone) + $I_{3\Omega}$ (20 V voltage source alone) = 3.75 - 1 = 2.75 A

Bloom's Taxonomy level :- 3

b) Removing the load branch of 3Ω resistance

Applying KVL to loop	
-20 + 4I = 0 $4I = 20$	
Therefore, $I = 5 A$	1M
$V_{Th} = V_{oc} = 2(0) + (5+10)*(5) - 4(5) = 55 V$	1M
$R_{eq} = 2 + 5 + 10 + (4 \text{ II } 0) = 17 + 0 = 17 \Omega$	1M
Drawing Thevenin's equivalent circuit with correct V _{Th} a	and R_{eq} . 1M

Bloom's Taxonomy level :- 3

c) The time constant of the series R-C circuit is given by $\zeta = RC = (2 M\Omega)(0.01\mu F) = 0.02 sec$ **1**M At t = 0.01 sec V_c = V*[1 - e^(-t/\zeta)] = 50*[1 - e^(-0.01/0.02)] = **30.32** V 1MAt t = 0.02 sec $V_c = V^*[1 - e^{(-t/\zeta)}] = 50^*[1 - e^{(-0.02/0.02)}] = 31.606 V$ 1MCurrent in the circuit at t = 0 is $I_0 = V/R = 50/2 M\Omega = 25 \mu A$ **1**M

Bloom's Taxonomy level :- 1 and 2

Q 2) Attempt any two. a) $v = V_m \sin \omega t$ Volt and $i = I_m \sin(\omega t + \Phi)$ Amp Instantaneous power, $p = v^*i = (V_m \sin \omega t) * [I_m \sin(\omega t + \Phi)]$ = $V_m I_m \sin \omega t \sin(\omega t + \Phi)$ Using $\cos(A - B) - \cos(A + B) = 2 \sin A \sin B$ $p = (V_m I_m/2)^* [\cos(\omega t - \omega t + \Phi) - \cos(2\omega t + \Phi)]$ $p = (V_m I_m/2)^* [\cos \Phi - \cos(2\omega t + \Phi)]$ Integrating this instantaneous power over a cycle, the average power in the circuit is given by, $P_{av} = (V_m I_m/2) \cos \Phi = V I \cos \Phi W$ **4**M

Bloom's Taxonomy level :- 2 and 3

2

CO:- 1

1M

CO;- 1

CO;- 1

CO;- 2

b) Apparent power S = 10 KVA Q = 8 KVAR Power consumed, P = $\sqrt{[(S)^2 - (Q)^2]} = \sqrt{(100 - 64)} = 6$ KW 1M sin $\Phi = 8/10 = 0.8$ cos $\Phi = 0.6$ Power consumed, P = V Icos Φ 6000 = 230*I*0.6 I = 6000/(230*0.6) = 43.47 A 1M $Z = V/I = 230/43.47 = 5.2910 \Omega$ R = Zcos $\Phi = 5.2910*0.6 = 3.1746 \Omega$ 1M $X_L = Zsin \Phi = 5.2910*0.8 = 4.2328 \Omega$ $L = X_L/2*[]*f = 4.2328/2*[]*50 = 0.01347 \text{ H} = 13.47 \text{ mH}$ 1M

Bloom's Taxonomy level :- 4

CO;- 2

c) $R = 10 \Omega$ L = 0.1H $C = 150 \mu F V = 200 V$ f = 50 Hz $X_L = \omega L = 2^* \prod^* f^* L = 2^* \prod^* 50^* 0.1 = 31.41 \Omega$ $X_{C} = 1/\omega C = 1/2^{T} f^{*}C = 1/2^{T} 50^{*}150 \times 10^{-6} = 21.22 \Omega$ $Z = R + j X_L - j X_C = 10 + j (X_L - X_C) = 10 + j (31.41 - 21.22) = 10 + j 10.19$ $= 14.27 < 45.53^{\circ} \Omega$ **1**M $I = V/Z = 200/14.27 < 45.53^{\circ} = 14.01 A$ **1M** $\cos \Phi = \cos 45.53^{\circ} = 0.7 \log$ $P = V I \cos \Phi = 200^* 14.01^* 0.7 = 1.96 kW$ 1MFrequency at which circuit will undergo resonance is given by, $f = 1/2^{*} \prod^{*} \sqrt{(L^{*}C)} = 1/2^{*} \prod^{*} \sqrt{(0.1^{*}150X10^{-6})} = 41.09 \text{ Hz}$ **1**M

Bloom's Taxonomy level :- 2 and 3

CO;- 2

2M

CO:- 3

Q 3) Attempt any one.

a) A 1.5 KVA, 220/110 V, 50 Hz, single phase transformer $P_{core} = 32 W$ $P_{cu} = 44 W$ at full load

efficiency at full load and 0.8 power factor lagging is given as, $\eta = [(KVA*1000*\cos \Phi) / (KVA*1000*\cos \Phi) + P_{core} + P_{cu}]*100$ = [1500*0.8 / 1500*0.8 + 32 + 44] = 94.04 %

efficiency at half load and unity power factor is given as, $\eta = [(KVA*1000*\cos \Phi) / (KVA*1000*\cos \Phi) + P_{core} + \frac{1}{4} * P_{cu}]*100$ = [1500*1/1500*1 + 32 + 11] * 100= 97.21 % 2M

Bloom's Taxonomy level :- 1 and 2

b) Let N₁ = No. of turns on primary winding
N₂ = No. of turns on secondary winding
E₁ = rms value of emf induced in primary winding
E₂ = rms value of emf induced in secondary winding

 $\Phi_{\rm m}$ = maximum flux in the core

f = frequency of the supply

Let $\Phi = \Phi m \sin \omega t$ be flux in the core

According to Faraday's laws of electromagnetic induction emf induced in primary winding is,

 $e_1 = -N_1 d\Phi/dt = -N_1 d/dt \{\Phi m \sin \omega t\} = -N_1 \omega \Phi_m \cos \omega t$

 $= -N_1 d\Phi/dt = -N_1 d/dt \{\Phi m \sin \omega t\} = N_1 \omega \Phi_m \sin(\omega t - \prod /2)$ rms value of emf induced in primary winding is given by, $E_1 = N_1 \omega \Phi_m / \sqrt{2} = N_1 * 2 * \prod * f * \Phi_m / \sqrt{2} = 4.44 f \Phi_m N_1$ Volts emf induced in secondary winding is,

2M

 $e_2 = -N_2 d\Phi/dt = -N_2 d/dt \{\Phi m \sin \omega t\} = -N_2 \omega \Phi_m \cos \omega t$

 $= -N_2 d\Phi/dt = -N_2 d/dt \{\Phi m \sin \omega t\} = N_2 \omega \Phi_m \sin(\omega t - \prod /2)$

Similarly rms value of emf induced in secondary winding by Faraday's laws is given by, $E_2 = N_2 \omega \Phi_m / \sqrt{2} = N_2 * 2* \prod * f^* \Phi_m / \sqrt{2} = 4.44 f \Phi_m N_2$ Volts

2M

OR

Let N_1 = No. of turns on primary winding

 $N_2 = No.$ of turns on secondary winding

 E_1 = rms value of emf induced in primary winding

 $E_2 = rms$ value of emf induced in secondary winding

 $\Phi_{\rm m}$ = maximum flux in the core

f = frequency of the supply

Let $\Phi = \Phi m \sin \omega t$ be flux in the core

According to Faraday's laws of electromagnetic induction average value of emf induced per turn considering first quarter cycle is, $e = d\Phi/dt = (\Phi_m - 0)/(T/4) = 4\Phi_m f$

For sinusoidal waveform, form factor which is equal to rms value/average value is 1.11 Hence, rms value of emf induced per turn is, $E = 1.11 * 4\Phi_m f = 4.44 f \Phi_m$

rms value of emf induced in primary winding is given by,	2M
$E_1 = 4.44 f \Phi_m N_1$ Volts	130
rms value of emf induced in secondary winding is given by,	1M
$E_2 = 4.44 f \Phi_m N_2 Volts$	1M
에는 것은 것은 것을 알려야 한다. 것은 것은 것은 것은 것은 것을 알려야 한다. 것은 것을 가지 않는 것을 가지 않는 같은 것은 것은 것은 것을 같은 것은 것은 것은 것은 것은 것을 알려야 한다. 것은 것은 것을 것을 것을 수 없다. 것은 것을	TIM

Bloom's Taxonomy level :- 3

CO;- 3