FY B. Tech.

Total No. of Questions – [03]

L	
GP	

Total No. of Printed Pages: 01

MARCH 2020 / INSEM (T1) F. Y. B.TECH. (COMMON) (SEMESTER - II) COURSE NAME: Engineering Physics (CB) COURSE CODE: ES10184A-CB

(PATTERN 2018)

Time: [1 Hour]

[Max. Marks: 20]

[4]

Instructions to candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed.
- 4) Use suitable data where ever required.
- Q 1) Attempt any **two**.
 - a) Derive an expression for condition of destructive interference by reflection [4] from a thin uniform film which has a refractive index less than its surrounding.
 - b) With the help of neat diagrams, derive an expression for minima in [4] Fraunhofer diffraction from a single slit using phasor diagram.
 - c) For a diffraction grating with 600grooves/mm, calculate the angle (in [4] degrees) of the first minimum after the second principal maximum for wavelength of 632.8nm if the width of the grating is 15mm.
- Q 2) Attempt any two.
 - a) Show that Fermi-Dirac distribution function is symmetric about the Fermi [4] energy E_F by proving the identity

$$f(E_F + \Delta E) = 1 - f(E_F - \Delta E)$$

b) For a p-type semiconductor, prove that

$$E_F = E_{Fi} - kT ln\left(\frac{N_A}{n_i}\right)$$

c) Calculate the built in potential V_{bi} for a Germanium diode with a doping of [4] 3.7×10^{16} /cm³ on the n-side and 0.6×10^{15} /cm³ on the p-side. The intrinsic charge carrier density at T = 300K for Germanium is 2.4×10^{13} /cm³.

Given, $k = 1.38 \times 10^{-23} \text{ J/K}$ and $e = 1.6 \times 10^{-19} \text{ C}$.

- Q 3) Attempt any **one**.
 - a) With the help of neat diagram(s) explain the concept of direct and indirect [4] band gap in a semiconductor. Discuss how an iso-electronic impurity helps in transition from conduction band to valence band in an indirect band gap material due to Heisenberg's uncertainty principle.
 - b) If the absorption coefficient of GaAs is 1.2×10⁴ cm⁻¹ at 800nm, then what **[4]** is the percentage of light absorbed after it travels a distance of 1.7μm?

12