S.Y. Civil HE 613

Total No. of Questions - [6]

Total No. of Printed Pages: 1

G.R. No.			
	MARCH 2020 INSEM (T1)		
	S. Y. B.TECH. (Civil Engineering) (SEMESTER - IV)		
COURS	E NAME: Hydraulic Engineering E CODE: CVUA22185 (PATTERN 2018)		01
Time: [1 Hour]		arks: 2	0]
(*) Instr	uctions to candidates:		
1. Atter 2. Figu	mpt Q.1 OR Q.2, Q.3 OR Q.4, Q.5 OR Q.6 res to the right indicate full marks. of scientific calculator is allowed. time suitable data wherever required.		00
			CO
	A 10 mm ball with R.D. 1.2 is suspended from a string in air floating at a velocity of 10 m/s. Determine the angle which the string will make with the vertical $v = 1.53 \times 10^{-5} \text{ m}^2/\text{s}$	8	1
	string will make with the vertical. $C_D = \frac{24}{R_e} \left[1 + \frac{3}{16} R_e \right]$ if $0.2 < R_e < 20$ $C_D = \frac{24}{R_e} + \frac{3}{\sqrt{R_e}} + 0.34$ if $0.5 < R_e < 10^4$		
	$C_D = \frac{24}{R_e} + \frac{3}{\sqrt{R_e}} + 0.34$ if $0.5 < R_e < 10^4$		
	OR		
Q. 2)	Derive an equation for time of emptying a tank of any shape A rectangular tank of surface area 375 m² is to be emptied over a triangular notch in one of its sides. Find how long will it take to reduce the head over the apex of the notch from 1 to 0.6		2
Q. 3)	Q = 1.417 H ^{5/2} The depth of flow in trapezoidal channel is to be 2 m with a flow rate of 25 m ³ /s. If the section is to be most efficient find the base width and the slope necessary to carry this discharge. Take side slope to be 1.5 H: 1 V and n = 0.015. What would be Chezy's C for this case?		3
	OR	t 8	3
Q. 4)	Derive condition for maximum velocity in hydraulically efficien circular channel for Chezy's formula and Manning's formula.	, 0	
Q. 5)	A rectangular channel has a width of 2 m and carries a discharg of 2 m ³ /s with a depth of 0.25 m. Calculate (i) The specific energ (ii) The depth alternate to existing depth OR	e 4 y	3
Q. 6)	s diameter cross section of an open channel	4	3