Total No. of Questions - [4	41
-----------------------------	----

Total No. of Printed Pages: 03

G.R. No.		A DED COT	
		PAPER CODE	U111-203B
			

DECEMBER 2021 (INSEM+ ENDSEM) EXAM F.Y. B. TECH. (SEMESTER - I)

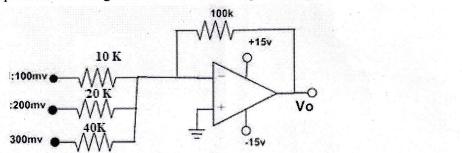
COURSE NAME: BASIC ELECTRONICS ENGINEERING COURSE CODE: ET10203B

(PAT	TERN 2020)		
ne: [2Hr]			
Instructions to candidates:	[Widn. Widiks. 00]		
Use of scientific calculator is allowed	KS.		
Use suitable data where ever required	d		
Solve the following			
i) If the a.c. input to a half-wave in diode PIV rating is	rectifier is an r.m.s value of $400/\sqrt{2}$ volts, then	[2]	
	b) 400 V		
C) 400 V2 V	d) 200 V		
The 10 v BC supply and drop	across each I FI) is 2V the volume of the second	[2]	
iii) The internal quantum efficien temperature.	cy of LEDs decreasingwith	[2]	
a) Exponentially, decreasingc) Linearly, increasing	b) Exponentially, increasing d) Linearly, decreasing		
iv) For single phase supply frequency of 50 Hz, ripple frequency in full wave			
a) 25 Hz	b) 50 Hz	[2]	
c) 100 Hz	d) 200 Hz		
v) Each diode in a center-tapped full- conducts for of the inpu	wave rectifier isbiased and	[2]	
	Instructions to candidates: Figures to the right indicate full mark Use of scientific calculator is allowed Use suitable data where ever required Solve the following i) If the a.c. input to a half-wave rediode PIV rating is a) 400/√2 V c) 400 √2 V ii) Two LED's are connected in seriowith 10 V DC supply and drop resistance for 20 mA current is a) 200 Ω c) 300 Ω iii) The internal quantum efficien temperature. a) Exponentially, decreasing c) Linearly, increasing iv) For single phase supply frequent rectifier is a) 25 Hz c) 100 Hz v) Each diode in a center-tapped full-	Instructions to candidates: Figures to the right indicate full marks. Use of scientific calculator is allowed Use suitable data where ever required Solve the following i) If the a.c. input to a half-wave rectifier is an r.m.s value of 400/√2 volts, then diode PIV rating is a) 400/√2 V c) 400 √2 V b) 400 V d) 200 V ii) Two LED's are connected in series along with limiting resistance. It is supplied with 10 V DC supply and drop across each LED is 2V, the value of limiting resistance for 20 mA current is a) 200 Ω c) 300 Ω b) 250 Ω d) 400 Ω iii) The internal quantum efficiency of LEDs decreasing with temperature. a) Exponentially, decreasing c) Linearly, increasing d) Linearly, decreasing iv) For single phase supply frequency of 50 Hz, ripple frequency in full wave rectifier is a) 25 Hz c) 100 Hz b) 50 Hz d) 200 ½z	

vi)	What is the average value of half wave re	ectifier, for the Vp(out)= 50V	[0]	
1.,	a) 21.2 V	b) 15 V	[2]	
	c) 15.9 V	d) 19.9 V		
vii)	In Center tapped FWR, if the peak value	e of secondary voltage is 25 V then the	[2]	
	peak value of the output voltage is	b) 11.8 V		
	a) 24.3 V c) 25.7 V	d) 12.5 V		
viii)	The current flowing through the Photo reverse bias mode is called as		[2]	
	a) reverse current	b) dark current		
	c) forward current	d) pinch off current		
:)	Determine value of collector current I _C ,	for $\beta=150$ and base current $I_B=430 \mu A$.		
ix)		b) 46.8 mA	[2]	
	a) 100 mA c) 64.5 mA	d) 80.3 mA		
		ANY WILL		
x)	For voltage divider biasing circuit, if R is the value of V _B (voltage at Base term	$_{1}$ =18 K Ω , R $_{2}$ = 4.7 K Ω , V $_{CC}$ =10V. What inal)?	[2]	
	a) 2.07 V	b) 3.23 V		
	c) 10 V	d) 5.1 V		
xi)	In Common Emitter amplifier, if base of the value of collector current?	current is 10 mA and beta is 100. What is	[2]	
		b) 1000 micro A		
	a) 1 mA c) 1 A	d) 10 nano A		
xii)	DIT : 6 V - 2 42 V and Rr=2400 What			
	a) 10 mA	b) 25 mA		
	c) 20 mA	d) 100 mA		
xiii)	iii) What is the total phase shift requirement, around the feedback loop, for a phase-			
	shift oscillator?	b) 180°		
	a) 90° c) 270°	d) 360°		
xiv)	The biasing circuit has a stability factor	of 24. If due to temperature change, I _{CBO}	503	
	changes by 3 µA, then I _C will change b	y	[2]	
	a) 8 µA	b) 7.2 μA		
	c) 0.72 µA	d) 72 μA		
xv)	of input signal at its output, what will be a) 12 V	b) 0.7 V	[2]	
	c) 6 V	d) 1.2 V		
	Solve any three out of four			
a)	Sketch the internal construction of an and explain the pinch off process?	n-channel Enhancement type MOSFET	[5]	

2

Q2


- b) List the MOSFET amplifier configurations, and state two applications for each configuration. [5]
- Calculate V_{GS} and V_{DS} for the MOSFET with voltage divider bias circuit, given parameters are $R_1 = 150 \text{ K}\Omega$, $R_2 = 20 \text{ K}\Omega$, $R_D = 200 \Omega$, $V_{DD} = 24 \text{ V}$. Assume this particular MOSFET has minimum values of $I_{D(on)} = 200 \text{ mA}$ at $V_{GS} = 4 \text{ V}$ and $V_{GS(th)} = 2 \text{ V}$.
- d) Sketch the internal structure for TRIAC and draw its complete characteristics. [5]

Q.3 Solve any three out of four

- a) Write a short note on CMRR and Slew rate of an op-amp. [5]
- b) Compare between Inverting and noninverting amplifier configurations of an opage [5] amp
- c) Draw the diagram of non-inverting amplifier configuration using an op-amp and derive the expression of its gain. [5]

[5]

d) For the given circuit diagram, if 3 input voltages 100mv; 200mv and 300mv are applied at inverting terminal. Find the output voltage Vo.

END.