G.R. No.	
* *	~ ,

PAPER CODE

U111-204B

DECEMBER 2021 (INSEM+ ENDSEM) EXAM

F.Y. B. TECH. (SEMESTER - I)

COURSE NAME: ENGINEERING CHEMISTRY

COURSE CODE: ES10204B

(PATTERN 2020)

Time: [2Hr] [Max. Marks: 60] (*) Instructions to candidates: Figures to the right indicate full marks. Use of scientific calculator is allowed 2) 3) Use suitable data where ever required Q.1 Solve the following Which of the following statements are correct? i) [2] i)Disinfection by chlorine is costlier than ozone. ii) Chloramine is much more lasting than chlorine alone and consequently, it is a better bactericidal than chlorine alone. iii) Bleaching powder introduces calcium in water, thereby making it more hard. iv) Bleaching powder is stable and does not deteriorate on keeping. a) i & ii b) iii & iv c) i & iii d) ii & iii An exhausted Zeolite softener was regenerated by passing 80 litres of NaCl ii) [2] solution having strength of 6% NaCl. Calculate the CaCO3 equivalent hardness retained on zeolite bed which was replaced by NaCl solution. a) 410.256 mg b) 410.256 gm c) 4102.56 mg d) 4102.56 gm 50 ml of standard hard water containing 1 mg/ml $CaCO_3$ when titrated iii) [2] against EDTA using EBT indicator required 20 ml EDTA for the end point. Hence 1 ml of EDTA solution reacts with _____of CaCO₃ hardness. a) 25 mg b) 2.5 mg c) 250 mg d) 0.25 mg Match the following iv) [2]

Zeolite softener	I	Regenerated by dil HCl	
Cation Exchanger	II	Desalination of water	
Anion Exchanger	III	Regenerated by NaCl solution	
Electrodialysis	IV	Regenerated by dil NaOH	
P-I, Q-II, R-III, S-IV			
) P- II, Q-III, R – IV, S-I			
P- III, Q-I, R-IV, S-II			
) P-II, Q-III, R – I, S-IV			
sample of hard water has a hardr	ess o	f 510 mg/L. Convert this hardness	[2]
n degree French, degree Clarke and	d ppm	respectively.	
35.7, 510 and 51			
510, 35.7 and 51			
255, 71 and 153			
51, 35.7 and 510			
sample of hard water contains followed	lowing	g dissolved salts per liter.	[2]
		SO ₄ = 60 mgs, Ca(NO ₃) ₂ = 328 mgs,	
aCl = 58.5 mgs. Calculate perman	ent ha	ardness of water in degree French.	
Atomic weight Ca=40, Mg=24, S= 3	2, Cl=	35.5, O=16, N = 14, C=12, Na=23	
nd H=1).			
450 °F			
450 °Fr			
31.5 °Fr			
45 °Fr			
315 °Fr		2001	
n exhausted zeolite was regenerate	ed by	300 litre of NaCl having strength	[2]
10 gm/litre. How many litres of a less $10 - 10 = 10$	nard v	vater having hardness 350 ppm	
159915.71 liters	ener?		
153846.15 liters			
151735.36 liters			
155915.71 liters			
	egene	rated by passing 150 litres of NaCl	יכו
olution having strength of 150 g/lit			[2]
imple is 600 ppm, calculate total v			
. I Fr, outculate total v	JIGIII	of water that can be softened by	
is softener.			
is softener. 32051.28 liters			
32051.28 liters			
32051.28 liters 22500.00 liters			
32051.28 liters 22500.00 liters 19230.76 liters			
32051.28 liters 22500.00 liters 19230.76 liters 32122.90 liters	e for h		[2]
32051.28 liters 22500.00 liters 19230.76 liters 32122.90 liters hich of the following is responsible	e for h		[2]
32051.28 liters 22500.00 liters 19230.76 liters 32122.90 liters hich of the following is responsible C ₂ S (ii) C ₃ S (iii) C ₃ A (iv) C ₄ AF	e for h		[2]
32051.28 liters 22500.00 liters 19230.76 liters 32122.90 liters hich of the following is responsible C ₂ S (ii) C ₃ S (iii) C ₃ A (iv) C ₄ AF (i) and (ii)	e for h		[2]
32051.28 liters 22500.00 liters 19230.76 liters 32122.90 liters hich of the following is responsible C ₂ S (ii) C ₃ S (iii) C ₃ A (iv) C ₄ AF (i) and (ii) (ii) and (iii)	e for h		[2]
32051.28 liters 22500.00 liters 19230.76 liters 32122.90 liters hich of the following is responsible C ₂ S (ii) C ₃ S (iii) C ₃ A (iv) C ₄ AF (i) and (ii) (ii) and (iii) (iii) and (iv)	for h		[2]
32051.28 liters 22500.00 liters 19230.76 liters 32122.90 liters hich of the following is responsible C ₂ S (ii) C ₃ S (iii) C ₃ A (iv) C ₄ AF (i) and (ii) (ii) and (iii)		igh strength in cement?	[2]

v)

vi)

vii)

viii)

ix)

x)

	respectively	
9.	a) 2% and 6%	
	b) 6% and 2%	
	c) 6% and 4%	
	d) 4% and 2%	
xi)	Structural requirement for intrinsic conducting polymers are and	[2]
	a) Polymers are highly crystalline and has high planarity	
	b) Polymers are less crystalline and has high planarity	
	c) Polymers are highly crystalline and has low planarity	
	d) Polymers are less crystalline and has low planarity	
xii)	is used for thermal insulation in construction industry andis	[2]
	used for core of Polymer optical fibers respectively	[2]
	a) Polyethylene and Polyurethane	
	b) Expanded Polystyrene and Polymethyl Methacrylate	
	c) PPV and Nylon 6,6	
	d) Polycarbonate and Nylon 6,6	
xiii)		[2]
	order)	[4]
	a) Core, Cladding, Buffer, Jacket	
	b) Cladding, Buffer, Core, Jacket	
	c) Cladding, Core, Jacket, Buffer	
	d) Jacket, Buffer, Core, Cladding	
xiv)	Which of the following is not applicable for liquid crystal display	[2]
	(i) It is an electronic display device that operates by applying a varying	[-]
	electric voltage to a layer of liquid crystal	
	(ii) LCDs are commonly used for portable electronic games	
	(iii) Liquid crystal display screen works on the principle of emitting light.	
	(1v) It uses nematic liquid crystals	
	(v) It uses ITO as anode and Aluminium as cathode	
	a) (i) and (iii)	
	b) (iii) and (iv)	
	c) (iii) and (v)	
	d) (ii) and (iv)	
xv)	In Primary Lithium battery,is used as cathode andis	[2]
	used as electrolyte respectively.	
	a) Wet paste of Manganese dioxide and Lithium salts dissolved in aqueous	
	inorganic solvent	
	b) Wet paste of Manganese dioxide and KOH dissolved in organic solvent	
	c) Heat treated Manganese dioxide and Lithium salts dissolved in aqueous	
	organic solvent	
	d) Heat treated Manganese dioxide and Lithium salts dissolved in non-	
2.2	aqueous organic solvent Solve any three out of four	
2.2 1)	1) Explain:	
-)		[5]
	i) Acetamide absorbs at 1660 cm ⁻¹ whereas benzaldehyde absorbs at 1745 cm ⁻¹	
	ii) Ethylene shows absorption at $\lambda \max = 171$ nm but butadiene shows	
	absorption at λ max=217 nm	

Predict and draw graphs in the following conductometric titration and show b) [5] equivalence point of titration. Explain the nature of graph before and after equivalence point i) CH₃COOH vs NaOH (NaOH taken in burette) ii) HCl vs NH4OH (NH4OH taken in burette) 1) What are the possible electronic transitions in the following molecules c) [5] when they are exposed to UV-Visible radiations? i) CH₃-CH₂-COOH ii) CH₃COCH₃ iii) CH₃-CH₂-CH₂-CH₃ 2) Why the absorption band at 280 nm in aniline is disappeared upon addition of hydrochloric acid? Calculate possible number of fundamental vibrations in CO2, CH4, H2O, d) [5] C2H6 & NH3 Q.3 Solve any three out of four Identify types of oxide films formed on the surface of following metals (i) Na a) [5] (ii) Al (iii) Ag (iv) Mo (iv) Cu. Explain with oxidation reactions. What are the types of metallic coatings? Which is preferred coating? Why? b) [5] Identify type of coating involved in following examples: i) Coating of zinc on iron ii) Coating of tin on iron c) Give reason: [5] i) If the ratio of cathodic area to anodic area is greater, then the rate of wet corrosion is faster. ii) Smaller the grain size of the metal or alloy, greater is the rate of corrosion iii) The rate of atmospheric or dry corrosion is faster at higher temperature iv) The corrosion of metal is fast in humid atmosphere than in dry atmosphere v) The rate of corrosion is faster due to active impurity present in metal Identify the most appropriate and economical corrosion protection method d) [5] for following examples. i) ornaments, wrist watches, belts, pens ii) nuts, bolts, screws, spanners & screw drivers iii) containers used for storing foods, ghee, oils, pickles, medicines iv) Chemical reactors, Industrial water coolers, Pipe lines for carrying corrosive liquids or solutions etc. v) Buried steel pipelines, Ship hull, Buried cables

2) Write forbidden electronic transitions in UV Visible region.