Total No. of Questions - [4]

Total No. of Printed Pages: 04

G.R. No.		PAPER CODE	U111-201A(RO
		a de si a	

DECEMBER 2021 (INSEM+ ENDSEM) EXAM F.Y. B. TECH. (SEMESTER - I)

COURSE NAME: LINEAR ALGEBRA

COURSE CODE: ES10201A

(PATTERN 2020)

Time: [2Hr] [Max. Marks: 60]

- (*) Instructions to candidates:
- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data where ever required

[2]

i) Rank of the matrix A=
$$\begin{bmatrix} 1 & 3 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
 is A] 1 B] 2 C] 3 D] 0

ii) Non zero Solution of
$$x + y + z = 0, 2x + 2y + 2z = 0, 3x + 3y + 3z = 0$$
 is [2]

A)
$$x = t_1 + t_2$$
, $y = t_1$, $z = t_2$
B) $x = t_1 + 2t_2$, $y = t_1$, $z = t_2$
C) $x = t_1 - t_2$, $y = t_1$, $z = t_2$
D) $x = -t_1 - t_2$, $y = t_1$, $z = t_2$

[2]

- iii) In solving the system of equations AX = B if $\rho(A) = \rho([A:B]) = 1$ having 3 number of unknown variables. Then given system has
 - A] Unique solution

B] No Solution

C] One free parameter solution

D] Two free parameter solutions

iv) Rank of the matrix
$$A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$
 is A] 1 B] 2 C] 3 D] 0

```
v) If A is non singular matrix then Homogenous system of equation AX=0 has
                                                                                                                          [2]
      A] Only Trivial solution
                                                          B] Non trivial solutions
      C] No solutions
                                                         D] None of above
 vi) Which of the following set is subspace of \mathbb{R}^2?
                                                                                                                         [2]
      A] W = \{(x,y) / y = 2x + 3\}
      B] W = \{(x, y) / x = 3\}
      C] W = \{(x,y) / y = 2x\}
      D] W = \{(x,y) / y = 2\}
 vii) Linear Span of vectors v1=(1,0,0) and V2=(0,0,1) is
                                                                                                                         [2]
       A] One dimensional Subspace of \mathbb{R}^3
       B] Two dimensional Subspace of \mathbb{R}^3
      C] Three dimensional Subspace of \mathbb{R}^3
       D] Zero dimensional Subspace of \mathbb{R}^3
 viii) Let V be vector space of set of all polynomials of degree \leq 3
                                                                                                                         [2]
       V = \{a_0 + a_1t + a_2t^2 + a_3t^3 / a_0, a_1, a_2, a_3 \in \mathbb{R}\} then Basis of V are
    A] \{1 \ t\}
                                                               B] \{t\}
    C] { 1, t, t^2 t^3}
                                                               D) \{0, t, t^2\}
 ix) Dimensions of the row space of the matrix A = \begin{bmatrix} 0 & 1 \end{bmatrix}
                                                                                                                        [2]
     A] 1
                               B] 2
                                        Cl 3 Dl
x) Basis of the Column space of the matrix A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}
                                                                                                                        [2]
    A] \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}
    B] \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 2\\0 \end{bmatrix} \right\}
C] \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}
    D] A] \left\{ \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}
                                                                                                                        [2]
xi) Which of the following is Linear Transformation from \mathbb{R}^3 - \longrightarrow \mathbb{R}^2?
       A] T(x \ y \ z) = (x + y, xyz)
       B ] T(xyz) = (x-zy+z)
       C] T(x y z) = (xy yz)
       D] T(x y z) = (x+z, xy)
xii) Consider the Linear Transformation A : \mathbb{R}^3 \longrightarrow \mathbb{R}^3 define as AX= Y
                                                                                                                       [2]
Where A= 0 1 1
                                 then dimensions of Im A are
```

D] 4

lo o ol

B]

2

C] . 3

A]

xiii) Consider the Linear Transformation A: $\mathbb{R}^3 \to \mathbb{R}^3$ define as AX= Y

[2]

Where A= $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ then dimensions of Kernel A are

B] 2 C] 3 D] 4

xiv) Linear Transformation Y = AX where $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ is

[2]

[2]

A] Regular

- B] Orthogonal
- C] Singular
- D] *Composite

xv) Linear Transformation Y = AX where $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 1 & 1 & 3 \end{bmatrix}$ is A] Regular B] Orthogonal C] Singular D] Composite

Q2 Solve any two out of three

a) . Apply the Gram-Schmidt orthogonalization process to find orthogonal basis , of the following set of vectors $S = \left\{ V1 = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, V2 = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}, V3 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \right\}$

b) Let V be a vector space of polynomials with inner product $\left\langle f(t) \;,\; g(t) \right\rangle = \int\limits_{-1}^{1} f(t)g(t)dt \;\; \text{Apply the Gram-Schmidt orthogonalization process}$ on $S = \left\{ V_1 = 1,\; V_2 = t,\;\; V_3 = t^2 \; \right\} \;\; \text{to find orthogonal basis.}$

c) Let P(t) be vector space of polynomials with inner product [5]

 $\langle f(t), g(t) \rangle = \int_{0}^{1} f(t)g(t)dt$ then for $f(t) = t^{2}$ & g(t) = t - 3 find i) $\langle f, g \rangle$ ii) [|f||

Q.3 Solve any two out of three

a) Q1] Find all Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$ [5]

b) Check whether A is diagonalizable & if yes diagonalize it where $A = \begin{bmatrix} 3 & -4 \\ 2 & -6 \end{bmatrix}$ [5]

c) Verify Caley-Hamilton Theorem for the matrix

[5]

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 & use it to find A^{-1}

Q.4 Solve any two out of three

a) Find the symmetric matrix that corresponds to the following quadratic form and hence determine the nature of the quadratic form

 $q(x \ y \ z) = 2x^2 - 2xz + 2y^2 + 2z^2$

- b) Find Signature of the quadratic form $Q(x,y,z) = 2x^2 + 4xy + 2y^2 + z^2$
- c) Using orthogonal digitalization find Canonical form corresponding to quadratic [5] form Q(x,y,z)= $2x^2 4xy + 5y^2$

END###