	F	111-253-ISE-ESE	
Total N	No. of	Questions – [6] Total No. of Printed Pages: 2	
G.̈́Ŗ. I	No.		
ecem		2021 - May/August 2022 / INSEM+ENDSEM	
« ⁻	F.	Y. M. TECH. (MECHANICAL DESIGN ENGINEERING) (SEMESTER – I COURSE NAME: MECHANICS OF COMPOSITE MATERIALS COURSE CODE: MEPA11203) .
-	Time:	(PATTERN 2020) [3 Hours] [Max. Marks: 6	01
3	2) 3) 4)	Figures to the right indicate full marks. Use of scientific calculator is allowed Use suitable data where ever required Discuss thermoset and thermoplastic matrix material. Give Examples	,
Q.1)	aj	of each	[4
	b)	Elaborate the role of fibers and matrix in composite material	[4
	c)	List synthetic and natural fibers	[2
Q.2)	a)	Explain below manufacturing method (Any one) with neat sketch, process, advantages , disadvantages and applications i) Filament winding	[6
j**		ii) Pultrusion	
	(d)	State the ASTM standards for Tensile Test Compression Test	[4

	d)	State the ASTM standards for Tensile Test, Compression Test,	[4]
		Flexural Test and Inplane Shear Test for fiber reinforced polymer	
		matrix composite material. Also give the specimen dimensions for	
		each test .	
Q.3)	a)	Obtain the expression for Rule of Mixture (ROM) to determine strength and modulus of composite laminate	[6]
	b)	Longitudinal modulus of glass reinforced lamina is to be doubled by substituting some of the glass fibers with aramid fibers. The total fiber volume (kevlar+glass) remains unchanged at 0.5. Calculate volume fraction of carbon fibers.	
		Given: $Ek = 190 GPa$, $Eg = 65 GPa$, $Em = 5 GPa$	2
Q.4		A high strength composite has the following elastic constants.	[10]
		$E_1 = 145 \text{ GPa}, E_2 = 12 \text{ GPa}, G_{12} = 6 \text{ GPa}, \vartheta_{12} = 0.25 \text{ and } \vartheta_{21} = 0.0207$,
1 4	a X	Determine the transformed reduced stiffness matrix [$\overline{\pmb{Q}}$] for the lamina with ply angle $\theta=45^0$	

,

Q.5		Using Classical Lamination Theory, determine [A], [B] and [D] matrices for [+45/-45] laminate with the following lamina properties. Thickness of each lamina is 0.125 mm. The material properties are E_1 =140GPa, E_2 = 10 GPa, E_6 = G_{12} =5 GPa, v_{12} = 0.3.	[10]
Q.6	a)	Discuss special types of laminates, their designation and example	[6]
	b)	A [+45/-45/-45/+45] symmetric laminate subjected to $N_x = 100$ and extensional stiffness matrix is given as	·[4]
546) 6		$[A] = \begin{bmatrix} 187 & 4.34 & 0\\ 4.34 & 101 & 0\\ 0 & 0 & 10.7 \end{bmatrix}$	
		Calculate midplane strains	