G.R. No. ## DECEMBER 2021 - ENDSEM EXAM ## S. Y. B. TECH. (E&TC) (SEMESTER - I) ## **COURSE NAME: DATA STRUCTURES** | COURSE CODE: ETUA21203 | | | |--|---|-----| | (PATTERN 2020) | | | | Time: [1 | Hour] [Max. Marks: 30] | | | (*) Instructions to candidates: 1) Answer Q.1 OR Q.2, Q.3 OR Q.4, Q.5 OR Q.6. 2) Figures to the right indicate full marks. 3) Use of scientific calculator is allowed. 4) Use suitable data where ever required. | | | | Q.1 a | Translate infix expression into its equivalent post fix expression: | [4] | | | A*(B+D)/E-F*(G+H/K) | | | Q.1 b | Compose C++ functions to perform all the operations in a stack using linked list. | [6] | | | OR | | | Q.2 a | Convert the postfix form of the following infix expression | [4] | | | $K+L-M*N+(O^P)-W/U/V*T+Q$ | | | Q.2 b | Compose C++ function to perform all the operations in a queue using linked list. | [6] | | Q.3 a | Build a recursive function in C++ for in-order and post order traversal of BST. | [4] | | Q.3 b | Construct a binary tree using following tree traversals | [6] | | | Post-order: D, F, E, B, G, L, J, K, H, C, A | | | | In-order: D, B, F, E, A, G, C, L, J, H, K OR | | | Q.4 a | Compare memory representation of binary tree with suitable example. | [4] | | Q.4 b | Create expression tree from given expression. | [6] | | | Infix: (8-5) * ((4+2) / 3) | | Postfix: 85 - 42 + 3 / * Q.5 a Predict adjacency list for given graph list its advantages [4] and disadvantages Q.5 b Define with example [6] - 1) connected graph - 2) path - 3) spanning tree OR Q.6 a Execute Breadth first traversal for given graph stepwise. [4] Root Node = V Q.6 b Predict minimum spanning tree for the given graph using [6] kruskal algorithm stepwise.