G.R. No. ## **DECEMBER 2021 - ENDSEM EXAM** T. Y. B. TECH. (E & TC) (SEMESTER - I) COURSE NAME: Information Theory and Coding Techniques | | CORSE CODE: ETUASTI83B (PATTERN 2018) | | |-------------------|---|------------| | Time: [1 | Hr] [Max. Marks: 30] | | | Instru | ctions to candidates: | | | 1) Ans
2) Figu | ower Q.1 OR Q.2, Q.3 OR Q.4, Q.5 OR Q.6. ures to the right indicate full marks. | | | 3) Use | of scientific calculator is allowed | | | 4) Use | suitable data where ever required | | | Q.1 a
b | 3 is primitive element of GF(5) field. Justify the statement. Consider a systematic cyclic code (7,4) with $g(x) = x^3 + x + 1$. Obtain the | [4]
[6] | | | code words for messages 1111, 1011 OR | | | Q2 a | Sketch for systematic cyclic code(7,4) with generator polynomial x^3+x^2+1 and state the significance of the connections with respect to generator polynomial | [4] | | b | Construct a generator matrix form generator polynomial x³+x+1 | [6] | | Q.3 a
b | Derive Galois field for GF(8) Design BCH code generator polynomial for n =7 and tc =1 OR | [4]
[6] | | Q.4 a | Design (7,3) RS double error correcting code .Use primitive polynomial over GF (2^3) x^3+x+1 | [4] | | b | Calculate systematic RS code for message (α , α^3 , α^5) using the generator polynomial derived in Q.4 a | [6] | |).5 a | For the convolution encoder shown in figure sketch state diagram representation and calculate dfree and error correcting ability from state diagram. | [4] | | | | | b For the Convolution encoder show in figure, sketch state diagram Obtain the output data sequence 10011. [6] Q.6 a [4] For the convolution encoder shown in figure, how many generating functions we have? Write matrix representations of these generating functions For 1/3 rate convolutional encoder following are generator polynomials b [6] $G1 = [1\ 0\ 0\],\ G2 = [1\ 0\ 1]$, $G3 = [1\ 1\ 1]$ Sketch the encoder and find the codeword for [1 1 0]