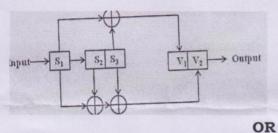
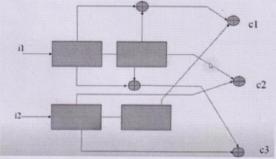

G.R. No.


DECEMBER 2021 - ENDSEM EXAM T. Y. B. TECH. (E & TC) (SEMESTER - I) COURSE NAME: Information Theory and Coding Techniques

	CORSE CODE: ETUASTI83B (PATTERN 2018)	
Time: [1	Hr] [Max. Marks: 30]	
Instru	ctions to candidates:	
1) Ans 2) Figu	ower Q.1 OR Q.2, Q.3 OR Q.4, Q.5 OR Q.6. ures to the right indicate full marks.	
3) Use	of scientific calculator is allowed	
4) Use	suitable data where ever required	
Q.1 a b	3 is primitive element of GF(5) field. Justify the statement. Consider a systematic cyclic code (7,4) with $g(x) = x^3 + x + 1$. Obtain the	[4] [6]
	code words for messages 1111, 1011 OR	
Q2 a	Sketch for systematic cyclic code(7,4) with generator polynomial x^3+x^2+1 and state the significance of the connections with respect to generator polynomial	[4]
b	Construct a generator matrix form generator polynomial x³+x+1	[6]
Q.3 a b	Derive Galois field for GF(8) Design BCH code generator polynomial for n =7 and tc =1 OR	[4] [6]
Q.4 a	Design (7,3) RS double error correcting code .Use primitive polynomial over GF (2^3) x^3+x+1	[4]
b	Calculate systematic RS code for message (α , α^3 , α^5) using the generator polynomial derived in Q.4 a	[6]
).5 a	For the convolution encoder shown in figure sketch state diagram representation and calculate dfree and error correcting ability from state diagram.	[4]

b For the Convolution encoder show in figure, sketch state diagram Obtain the output data sequence 10011.


[6]

Q.6 a

[4]

For the convolution encoder shown in figure, how many generating functions we have? Write matrix representations of these generating functions

For 1/3 rate convolutional encoder following are generator polynomials b [6] $G1 = [1\ 0\ 0\],\ G2 = [1\ 0\ 1]$, $G3 = [1\ 1\ 1]$ Sketch the encoder and find the codeword for [1 1 0]