G.R. No.		

DECEMBER 2021 - ENDSEM EXAM T. Y. B. TECH. (INFORMATION TECHNOLOGY) (SEMESTER - I) COURSE NAME: THEORY OF COMPUTATION COURSE CODE: ITUA31183

(PATTERN 2018)

T: [1 II]	[Max. Marks: 30]
Time: [1 Hour]	[IVIAX. IVIAIKS. 30]
1) Answer Q.1 OR Q.2, Q.3 OR Q.4, Q.5 OR Q.6.	
2) Figures to the right indicate full marks.	
3) Use of scientific calculator is allowed4) Use suitable data where ever required	
4) Use suitable data where ever required	
Q.1 a) Define PDA i) through final state ii) through empty stack	[4]
b) Design a PDA for L={ $a^n b^n \mid n \ge 0$ }	[6]
OR	
Q.2 a) What is deterministic and nondeterministic PDA?	[4]
b) Design a post machine for $L = \{ a^n b^n c^n \mid n \ge 0 \}$	[6]
Q.3 a) Discuss applications of TM	[4]
b) Design a Turing machine which replaces occurrences of 111 by 101	[6]
OR	
Q.4 a) What is halting problem of Turing machine?	[4]
b) Design a Turing machine to recognize palindrome strings over input a, b	[6]
Q.5 a) Prove that NFA accepts a word or not is recursive	[4]
b) Explain Post correspondence problem with example	[6]
OR	
Q.6 a) Explain with example decidable and non-decidable language?	[4]
b) Explain computational complexity with example	[6]