G.R. No.

DECEMBER 2021 - ENDSEM EXAM T. Y. B. TECH. (MECHANICAL) (SEMESTER - I) COURSE NAME: Numerical Methods COURSE CODE: ES31181ME

(PATTERN 2018)

Time: [1 Hour]

[Max. Marks: 30]

- () Instructions to candidates:
- 1) Answer Q.1 OR Q.2, Q.3 OR Q.4, Q.5 OR Q.6.
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data wherever required

Q.1) a) Solve using Gauss Legendre 2 Point rule:

[4 marks]

$$\int_{4}^{8} log_{10}(x^2) dx$$

b) Using trapezoidal rule evaluate: (Assume h = k = 0.5)

[6 marks]

$$I = \int_{0}^{1} \int_{0}^{1} (\sin(x) + \cos(x) + e^{x}) dx dy$$

OR

Q.2) a) Using Gauss Legendre 3 Point rule evaluate:

[4 marks]

$$I = \int_{1}^{3} (1 + \log_{10}(x)) dx$$

b) Solve using suitable Newton's Cotes Method:

[6 marks]

$$\int_{0}^{11} \sin(x) dx \quad (Assume \ n = 11)$$

Q.3) a) Using Euler's method, find an approximate value of y [4 marks] corresponding to x = 3, given that

$$dy/dx = \sqrt[5]{x+y}$$
, $take y(0) = 1$ and $h = 1$

b) Find the value of y at x = 1.3 by Runge-Kutta 2^{nd} order method, given that

$$\frac{dy}{dx} = \log_e x \times \sin x , \qquad take \ y(1) = 1.5 \ and \ h = 0.1$$

Q.4) a) Using Modified Euler's method, find an approximate value [4 marks] of y corresponding to x = 0.1, given that

$$\frac{dy}{dx} = 1 + \tan h(x), take y(0) = 1 and h = 0.1$$

b) Calculate the value of y at x = 0.2 by Runge-Kutta 4th [6 marks] order method, given that

$$\frac{dy}{dx} = 2x + y^3$$
, take $y(0) = 2$ and $h = 0.1$

- [4 marks] 0.5) a) Classify the given partial differential equation: $2\frac{\partial^2 u}{\partial x^2} + 8\frac{\partial^2 u}{\partial x \partial y} + 1\frac{\partial^2 u}{\partial y^2} + 2\frac{\partial u}{\partial x} - 2\frac{\partial u}{\partial y} = 8$
 - b) Given the values of u(x,y) on the boundary of the square [6 marks] in the Figure 1, evaluate the function u(x, y) satisfying the Laplace equation at the pivotal points of this figure by Gauss-Seidel method. (Do only 1 iteration)

Figure 1

Q.6) a) Classify the given partial differential equation:
$$4\frac{\partial^2 u}{\partial x^2} + 8\frac{\partial^2 u}{\partial x \partial y} + 4\frac{\partial^2 u}{\partial y^2} + 8\frac{\partial u}{\partial x} - 6\frac{\partial u}{\partial y} = 69$$

b) Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ in $0 < x < 5, t \ge 0$ given that [6 marks] u(0,t) = 50; u(5,t) = 200, u(x,0) = 80.Compute u by Crank-Nicholson method. (Assumeh = k = 1)

[4 marks]