| Total No | . of Questions - | - [3] | |----------|------------------|-------| | | • | | c) 700mVd) 709mV Total No. of Printed Pages: 04 | ſ | G.R. N | o. | PAPER CODE | U112-203B(| BE | | |-----|---------------|---|--|--|------------|--| | | | | | 0112 2000 | | | | | | DEC-2022 (INSE | M+ ENDSEM) EXA | M | | | | | | | I. (SEMESTER - II) | | | | | | | RSE NAME: BASIC ELEC | CTRONICS ENGIN | NEERING | | | | | COU | RSE CODE: ET10203B | | | | | | | Time. [| • | ΓERN 2020) | DA Marilan (| 27 | | | | - | | | | Marks: 60] | | | | 1) Fi
2) U | structions to candidates: igures to the right indicate full mark se of scientific calculator is allowed se suitable data where ever required | | | | | | Q.1 | | Solve the following | | | | | | | i) | In a semiconductor diode, as temperate a) Majority charge carriers increased. Minority charge carriers increased. Both a and be do not of the above | ses | | [2] | | | | ii) | A half-wave rectifier has an inputransformer has a turns ratio of 8: drop. a) 27.5 V b) 86.5 V c) 30 V d) 42.4 V | ut voltage of 240 V r.m. 1, what is the peak load vo | s. If the step-down oltage? Ignore diode | [2] | | | | iii) | A forward potential of 10V is appli
in series with the diode (Assume pr
a) 0.93 mA
b) 10 mA
c) 1 mA
d) 0.7 mA | | | [2] | | | | iv) | The barrier potential of a semicond Calculate its new value at 30 degree a) 706mV b) 694mV | luctor diode is 700 mV at
Celsius. | 27 degree Celsius. | [2] | | | v) | its Vp(out) is equal to 23 V? a) 49.3 V b) 46.7 V c) 48.6 V | |------------|---| | | d) 1.4 V | | vi) | Determine the peak output voltage for the full wave bridge rectifier. Assume silicon diode. The transformer is specified to have a 10 V rms secondary voltage and 120 V across the primary winding. | | • | a) 8.6 V
b) 12.74 V
c) 14.14 V
d) 13.44 V | | vii) | Determine the PIV rating for the full wave bridge rectifier. Assume all four are silicon diodes. The transformer is specified to have a 12 V rms as secondary voltage for the standard 140 V across the primary. a) 16.3 V b) 10 V | | • | c) 8.2 V
d) 15 V | | viii) | The average value of Half-Wave rectified Output Voltage is if its peak [2] output voltage is 60V. a) 20.28 V b) 20.43 V c) 19.09 V d) 59.3 V | | ix) | In a transistor, I_C = 100 mA and I_E = 100.5 mA. The value of β is | | x) | In a transistor if $\beta=50$ and collector current Ic is 10 mA, then the emitter [2] current I _E is | | xi) | The current gain (β) of a transistor in common emitter configuration is 40. If the collector current changes by 160 mA, then required change in the base current isfor constant V_{CE} . a) 4 mA b) 0.4 mA c) 40 mA d) 4 A | [2 | ×ii) | In RC phase shift oscillator producing output at $f = 500$ Hz, $R = 7.5$ K Ω then $C =$ | [2] | |-------------------|--|-----| | | a) 0.01 micro F b) 0.017 micro F c) 0.012 nF d) 0.001 micro F | | | ^X iii) | If the collector supply is 12 V, then collector cut off voltage under d.c. conditions is | [2] | | *iv) | In NPN transistor, operating in saturated mode, the value of output voltage V_{CE} is a) Less than V_{BE} b) Greater than V_{BE} c) Less than $2V_{BE}$ and greater than V_{BE} d) Equal to V_{BE} | [2] | | ¥v) | For a BJT fixed bias circuit, determine base current I_B , if V_{BB} =5V V_{BE} = 0.7V and R_B = 10K Ω . a) 650 μ A b) 430 μ A c) 340 μ A d) 100 μ A | [2] | | | Solve any three questions out of four | | | a) | Sketch the internal structure of p-channel Enhancement type MOSFET and explain its output drain characteristics? | [5] | | b) | Calculate V_{GS} and V_{DS} for the circuit, with $R_1 = 100 \text{ K}\Omega$, $R_2 = 15 \text{ K}\Omega$, $R_D = 200 \Omega$, $VDD = 24 \text{ V}$. Assume this particular MOSFET has minimum values of $I_{D(on)} = 200 \text{ mA}$ at $V_{GS} = 4 \text{ V}$ and $V_{GS(th)} = 2 \text{ V}$. | [5] | | c) | Calculate drain current when $V_{GS} = 6V$ for an E-MOSFET with $I_{D(on)} = 600$ mA at $V_{GS} = 10V$ and $V_{GS(th)} = 5V$. | [5] | | d) | Explain Turning OFF process of SCR with circuit diagram. | [5] | | | Solve any three questions out of four | | | a) | Compare inverting and non-inverting configuration of op amp with circuit diagram. | [5] | | b) | Define the following terms related to a differential amplifier. i) CMRR ii) Slew Rate | [5] | $\mathcal{O}^{\mathcal{S}}$ **E.***Q* c) If two input voltages are applied at inverting terminal of given circuit. Find the [5] output voltage V_{out} . d) For a given circuit diagram, if $V_1 = 4V$ and $V_2 = 1.5V$, calculate the output voltage Vout. Also calculate output voltage Vout for the values if $V_1 = -1V$ and $V_2 = 3V$. ____END------