Total No. of Questions - [4]

Total No. of Printed Pages: 04

G.R. No.	

PAPER CODE V112-201A(B

DEC 2022 (INSEM+ ENDSEM) EXAM F.Y. B. TECH. (SEMESTER - II)

COURSE NAME: Linear Algebra COURSE CODE: ES10201A

(PATTERN 2020)

Time: [2Hr]

[Max. Marks: 60]

- (*) Instructions to candidates:
- Figures to the right indicate full marks.
- Use of scientific calculator is allowed
- Use suitable data where ever required 3)

Q.1 Solve the following

[2]

- i) Rank of the matrix A of order 3X4 $\,$ is
 - A] Equal to 3
 - B] Equal to 4
 - C] Less than or equal to 4
 - D] Less than or equal to 3

[2]

[2]

- ii) Non zero Solution of x + y + z = 1, y + z = 1, 3y + 4z = 3 is
 - B] x=1, y=1 & z=0
 - C] x=0, y=1 & z=0
 - D] x=1-2t, y=1-t & z=t
- iii) In solving the system of equations AX = B if $\rho(A) = 2 \& \rho([A:B]) = 3$ and having 3 number of unknown variables. Then given system has

 - B] No Solution
 - C] One free parameter solution
 - D] Two free parameter solutions

iv) Rank of the matrix $A = \begin{bmatrix} 2 & 1 \\ 4 & 2 \\ 6 & 4 \end{bmatrix}$ is

[2]

Cl

DI

- v) If A is non-singular matrix then Homogenous system of equation AX=0 has
 - A] Only Trivial solution
 - B] Non trivial solutions
 - C] No solutions
 - D] None of above
- vi) Which of the following set is subspace of \mathbb{R}^2 ?
 - A] $W = \{(x,y) / y = 3x + 3\}$
 - B] $W = \{ (x, y) / y = 0 \}$
 - C] $W = \{(x,y) / y = 3\}$
 - D] $W = \{(x,y) / y = 3x-2\}$

vii) Set of vectors
$$S = \left\{ v_1 = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}, v_2 = \begin{bmatrix} -6 \\ 3 \\ -9 \end{bmatrix}, v_3 = \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix} \right\}$$
 is

- B] Basis of ℝ³
- C] Linearly dependent set
- D] Linear span of $S = \mathbb{R}^3$
- viii) Let V be vector space of set of all polynomials of degree ≤ 3 V= $\{a_0+a_1t+a_2t^2+a_3t^3 \ / \ a_0 \ , a_1,a_2,a_3 \in \mathbb{R}\}$ then Basis of V are [2]
 - A) Basis = $\{1 \ t\}$
 - B] Basis = $\{t\}$
 - C] Basis = $\{0, t, t^2\}$
 - D] Basis = $\{1, t, t^2, t^3\}$
- ix) Dimensions of the row space of the matrix $A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \\ 3 & 10 \end{bmatrix}$ are [2]
 - A] Row Space of A is Infinite dimensional
 - B] Dim Row Space A= 0
 - C] Dim Row Space A= 1
 - D] Dim Row Space A= 2
- x) Basis of the Column space of the matrix $A = \begin{bmatrix} 1 & 2 & -1 \\ 4 & 8 & -3 \end{bmatrix}$

A)
$$\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 2\\0 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$$
B) $\left\{ \begin{bmatrix} 1\\4 \end{bmatrix}, \begin{bmatrix} 2\\8 \end{bmatrix} \right\}$

- C] $\left\{ \begin{bmatrix} 1\\4 \end{bmatrix}, \begin{bmatrix} -1\\-3 \end{bmatrix} \right\}$ D] $\left\{ \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$
- xi) Which of the following is Linear Transformation from $\mathbb{R}^2 \longrightarrow \mathbb{R}^3$? B] T(x,y)=(x-y,x)[2]
 - C] T(x, y) = (x+y y+3, y-x)
 - D] T(x, y) = (1+2y, x-3y)

[2]

[2]

xii) Consider the Linear Transformation $A : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ define as AX= Y [2]

then dimensions of Im A are

- A] Dimensions of Im A=
- B] Dimensions of Im A=
- C] Dimensions of Im A=
- D] Dimensions of Im A= 4
- xiii) Consider the Linear Transformation $A: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ define as AX= Y Where A= $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 9 \end{bmatrix}$ then Dimensions of Kernel A are [2]
 - A] Dimensions of Kernel A = 1
 - B] Dimensions of Kernel A = 2
 - C] Dimensions of Kernel A = 3
 - D] Dimensions of Kernel A = 4
- Xiv) Linear Transformation Y = AX where $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ is [2] B] Orthogonal C] Singular D] Composite
- xv) Linear Transformation Y = AX where $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 1 & 1 & 3 \end{bmatrix}$ is [2] B] Orthogonal D] Composite

Q_2 Solve any two out of three

a) Let $V = \mathbb{R}^3 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid x, y, z \in \mathbb{R} \right\}$ with standard inner product defined as $\langle \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3$ then by Gram-Schmidt orthogonalization [5]

process find orthogonal basis of the set of vectors $S = \left\{ \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \right\}$

b) Let V be a vector space of polynomials with inner product defined as $\langle f(t), g(t) \rangle = \int_{1}^{1} f(t)g(t)dt$ then by Gram-Schmidt orthogonalization process [5]

find orthogonal basis of set of vectors $S = \{v_1 = 1 \mid v_2 = 1 + t, v_3 = t^2\}$

c)) Let V=
$$\mathbb{R}^3 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid x, y, z \in \mathbb{R} \right\}$$
 with standard inner product defined as [5] $\left\langle \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \right\rangle = x_1 y_1 + x_2 y_2 + x_3 y_3$ then for the vectors $v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $v_2 = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}$, $v_3 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$ find Projection of v_2 on v_1

- ii) ii) || v₂ ||
- iii) III) Angle θ angle between vectors $v_1 \& v_3$

Q.3 Solve any two out of three

- a) Find all Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$ [5]
- b) Check whether A is diagonalizable & if yes diagonalize it where $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ [5]
- c) Verify Caley-Hamilton Theorem & use it to find A^{-1} for the matrix $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$ [5]

Q.4 Solve any two out of three

- a) Find the symmetric matrix that corresponds to the following quadratic form [5] and hence determine the nature of the quadratic form Q(x,y,z)=2xv+2xz+2vz
- b) Find Signature of the quadratic form [5] $Q(x,y,z)=-2x^2+2xy-2xz-2y^2+2yz-2z^2$
- c) Using orthogonal digitalization find Canonical form corresponding to quadratic [5]

END###