Total No. of Questions - [3]

Total No. of Printed Pages: 04

G.R./PRN	
No.	

PAPER		_
CODE	U112-203B(A	روع)

[Max. Marks: 60]

DECEMBER 2022 (INSEM+ ENDSEM) EXAM F.Y. B. TECH. (SEMESTER - I)

COURSE NAME: BASIC ELECTRONICS ENGINEERING

COURSE CODE: ET10203B

(PATTERN 2020)

Time: [2Hr]
(*) Instructions to candidates:

1) Figures to the right indicate full marks.

2) Use of scientific calculator is allowed

3) Use suitable data where ever required

Quest	Question Description	Marks	СО	Blooms
ion	,		mapped	Taxonom
No.				y Level
Q.1	 i) Determine the peak output voltage for the full wave bridge rectifier. Assume silicon diode. The transformer is specified to have a 10 V rms secondary voltage and 120 V across the primary winding. a) 8.6 V b) 12.74 V c) 14.14 V d) 13.44 V 	[2]	CO1	Apply
	 ii) The potential drop in full wave bridge rectifier is a) 1.1V b) 1.2V c) 1.3V d) 1.4V 	[2]	CO1	Apply
	 iii) What happens to the diode when the positive voltages are applied at anode? a) Diode gets forward biased b) Diode begin to conduct c) Depletion region becomes smaller d) All of the above 	[2]	CO1	Understa nd
	iv) A forward potential of $10V$ is applied to a Si diode. A resistance of $10~\text{K}\Omega$ is also in series with the diode (Assume practical diode	[2]	CO1	Apply

	model). The current is			
	a) 0.93 mA			
	b) 10 mA			
	c) l mA			
	d) 0.7 mA	ı		•
	v) Semiconductor undergoing the process of doping are	[2]	CO1	Understa
	classified as	[-]		nd
	a) intrinsic semiconductor			•
	b) extrinsic semiconductor			
	c) both a and b			
	d) none of the above			
	vi) Unidirectional current of diode is termed as			Understa
	a) Amplification	[2]	CO1	
	b) modulation			n
	c) rectification			4
	d) none of the above			
	vii) The cut in or the Knee voltage of the silicon diode is	[2]	CO1	Understa
	a) 1V			nd
•	b) 0.5V			.
	c) 0.7V		1	
	d) 0.8V			
	4) 0.0			
	viii) is the maximum reverse potential that a diode	(0)	CO1	Understa
	can withstand	[2]	001	nd
	a) Maximum power dissipation		1	11th
	b) Forward voltage drop		}	
	c) Peak inverse voltage	ļ	•	
	d) Average forward current			
	ix) The current gain (β) of a transistor in common emitter			
j	configuration is 40. If the collector current changes by 160	[2]	CO2	Apply
	mA, then required change in the base current isfor	İ		
	constant V _{CE}	l		
	a) 4 mA			
	b) 0.4 mA			
	c) 40 mA			
	d) 4 A			
İ	w) In a fined him six y, y,	į		
	x) In a fixed bias circuit silicon NPN transistor (CE) with $\beta = 90$ is used if $V = 15$ V, $R = 3$ VO and $R = 15$	[2]	CO2	Apply
ŀ	30 is discut. If vee = 15 v, Re = 3 Rss and Rb = 1 MO the VCE	رسي ا]	1 1 1
ļ	er e poure to given as.			
}	a) 12.41 V			
	b) 7.5 V		1	
	c) 10 V d) 11.6 V			
	a) II.O V			

xi) Determine saturation current for the following circuit: $(V_{CE(sat)} = 0.2 \text{ V}, V_{BE} = 0.7\text{V})$	[2]	CO2	Apply
20 V 430 kn 2 2 kn 10 uf 10 uf 14			
a) 10 mA b) 6.67 mA c) 20 mA d) 0 mA			
xii) Which of the following method of biasing provides the best operating point stability?	[2]	CO2	Understa nd
a) Two battery bias b) Base bias c) Collector feedback bias d) Voltage divider bias			
xiii) In NPN transistor, operating in saturated mode, the value of output voltage V_{CE} is a) Less than V_{BE} b) Greater than V_{BE} c) Less than $2V_{BE}$ and greater than V_{BE} d) Equal to V_{BE}	[2]	CO2	Understa nd
xiv) In how many regions can the biased transistor work a) Four b) Two c) Three d) Five	[2]	CO2	Undersi nd
xv) Calculate the value of emitter current for a transistor with α_{dc} = 0.98, I _{CBO} = 5 μ A and I _B = 95 μ A. a) 4.5 mA b) 4 mA c) 3.5 mA	[2]	CO2	Apply

Q2	Solve any three out of four	1	· · · · ·	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Solve any three out of four	ł		
	a) Calculate V_{GS} and V_{DS} for the circuit, with R_1 =100 $K\Omega$, R_2 =20 $K\Omega$, R_D = 100 Ω , R_S =0 Ω , V_{DD} = 25 V. Assume this particular MOSFET has minimum values of $I_{D(on)}$ = 300 mA at V_{GS} = 4 V and $V_{GS(th)}$ = 1.5 V.	[5]	C03	Apply
	b) Sketch internal structure and V-I characteristics of TRIAC and explain its working?	[5]	соз	Understa nd
	c) Sketch n-channel MOSFET constructional diagram and explain the pinch-off process?	[5]	CO3	Understa nd
	d) With the help of V-I characteristics of SCR, explain the turn-on process for SCR?	[5]	CO3 -	Understand nd
Q.3	Solve any three out of four			
	a) Calculate closed loop gain of the circuit shown below and find out its output voltage if 2.5 Vdc input is applied to the circuit	[5]	CO4	Analyze
	Rf = 10 KΩ		Ì	
	$Rin = 5K\Omega$ V_{n} V_{n}			
	b) With the help of diagram explain the working of OPAMP as non-inverting comparator?	[5]	CO4	Understa nd
	c) Calculate the output voltage for the circuit shown in the figure	[5]	CO4	Analyz
	1K _D 1K _D 1K _D 1K _D 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	d) With the help of suitable diagram explain the following i) Slew rate ii) Virtual ground	[5]	CO4	Understa nd