Total No. of Questions - [3] Total No. of Printed Pages: 04 | G.R./PRN | | |----------|--| | No. | | | PAPER | | _ | |-------|-------------|------| | CODE | U112-203B(A | روع) | [Max. Marks: 60] ## DECEMBER 2022 (INSEM+ ENDSEM) EXAM F.Y. B. TECH. (SEMESTER - I) **COURSE NAME:** BASIC ELECTRONICS ENGINEERING **COURSE CODE: ET10203B** (PATTERN 2020) Time: [2Hr] (*) Instructions to candidates: 1) Figures to the right indicate full marks. 2) Use of scientific calculator is allowed 3) Use suitable data where ever required | Quest | Question Description | Marks | СО | Blooms | |-------|--|-------|--------|----------------| | ion | , | | mapped | Taxonom | | No. | | | | y Level | | Q.1 | i) Determine the peak output voltage for the full wave bridge rectifier. Assume silicon diode. The transformer is specified to have a 10 V rms secondary voltage and 120 V across the primary winding. a) 8.6 V b) 12.74 V c) 14.14 V d) 13.44 V | [2] | CO1 | Apply | | | ii) The potential drop in full wave bridge rectifier is a) 1.1V b) 1.2V c) 1.3V d) 1.4V | [2] | CO1 | Apply | | | iii) What happens to the diode when the positive voltages are applied at anode? a) Diode gets forward biased b) Diode begin to conduct c) Depletion region becomes smaller d) All of the above | [2] | CO1 | Understa
nd | | | iv) A forward potential of $10V$ is applied to a Si diode. A resistance of $10~\text{K}\Omega$ is also in series with the diode (Assume practical diode | [2] | CO1 | Apply | | | model). The current is | | | | |---|---|-------|-----|----------| | | a) 0.93 mA | | | | | | b) 10 mA | | | | | | c) l mA | | | | | | d) 0.7 mA | ı | | • | | | v) Semiconductor undergoing the process of doping are | [2] | CO1 | Understa | | | classified as | [-] | | nd | | | a) intrinsic semiconductor | | | • | | | b) extrinsic semiconductor | | | | | | c) both a and b | | | | | | d) none of the above | | | | | | vi) Unidirectional current of diode is termed as | | | Understa | | | a) Amplification | [2] | CO1 | | | | b) modulation | | | n | | | c) rectification | | | 4 | | | d) none of the above | | | | | | | | | | | | vii) The cut in or the Knee voltage of the silicon diode is | [2] | CO1 | Understa | | | a) 1V | | | nd | | • | b) 0.5V | | | . | | | c) 0.7V | | 1 | | | | d) 0.8V | | | | | | 4) 0.0 | | | | | | viii) is the maximum reverse potential that a diode | (0) | CO1 | Understa | | | can withstand | [2] | 001 | nd | | | a) Maximum power dissipation | | 1 | 11th | | | b) Forward voltage drop | | } | | | | c) Peak inverse voltage | ļ | • | | | | d) Average forward current | | | | | | ix) The current gain (β) of a transistor in common emitter | | | | | j | configuration is 40. If the collector current changes by 160 | [2] | CO2 | Apply | | | mA, then required change in the base current isfor | İ | | | | | constant V _{CE} | l | | | | | a) 4 mA | | | | | | b) 0.4 mA | | | | | | c) 40 mA | | | | | | d) 4 A | | | | | İ | w) In a fined him six y, y, | į | | | | | x) In a fixed bias circuit silicon NPN transistor (CE) with $\beta = 90$ is used if $V = 15$ V, $R = 3$ VO and $R = 15$ | [2] | CO2 | Apply | | ŀ | 30 is discut. If vee = 15 v, Re = 3 Rss and Rb = 1 MO the VCE | رسي ا |] | 1 1 1 | | ļ | er e poure to given as. | | | | | } | a) 12.41 V | | | | | | b) 7.5 V | | 1 | | | | c) 10 V
d) 11.6 V | | | | | | a) II.O V | | | | | xi) Determine saturation current for the following circuit: $(V_{CE(sat)} = 0.2 \text{ V}, V_{BE} = 0.7\text{V})$ | [2] | CO2 | Apply | |---|-----|-----|----------------| | 20 V
430 kn 2 2 kn
10 uf 10 uf 14 | | | | | a) 10 mA
b) 6.67 mA
c) 20 mA
d) 0 mA | | | | | xii) Which of the following method of biasing provides the best operating point stability? | [2] | CO2 | Understa
nd | | a) Two battery bias b) Base bias c) Collector feedback bias d) Voltage divider bias | | | | | xiii) In NPN transistor, operating in saturated mode, the value of output voltage V_{CE} is a) Less than V_{BE} b) Greater than V_{BE} c) Less than $2V_{BE}$ and greater than V_{BE} d) Equal to V_{BE} | [2] | CO2 | Understa
nd | | xiv) In how many regions can the biased transistor work a) Four b) Two c) Three d) Five | [2] | CO2 | Undersi
nd | | xv) Calculate the value of emitter current for a transistor with α_{dc} = 0.98, I _{CBO} = 5 μ A and I _B = 95 μ A. a) 4.5 mA b) 4 mA c) 3.5 mA | [2] | CO2 | Apply | | Q2 | Solve any three out of four | 1 | · · · · · | | |--|--|-----|-----------|----------------| | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Solve any three out of four | ł | | | | | a) Calculate V_{GS} and V_{DS} for the circuit, with R_1 =100 $K\Omega$, R_2 =20 $K\Omega$, R_D = 100 Ω , R_S =0 Ω , V_{DD} = 25 V. Assume this particular MOSFET has minimum values of $I_{D(on)}$ = 300 mA at V_{GS} = 4 V and $V_{GS(th)}$ = 1.5 V. | [5] | C03 | Apply | | | b) Sketch internal structure and V-I characteristics of TRIAC and explain its working? | [5] | соз | Understa
nd | | | c) Sketch n-channel MOSFET constructional diagram and explain the pinch-off process? | [5] | CO3 | Understa
nd | | | d) With the help of V-I characteristics of SCR, explain the turn-on process for SCR? | [5] | CO3 - | Understand nd | | Q.3 | Solve any three out of four | | | | | | a) Calculate closed loop gain of the circuit shown below and find out its output voltage if 2.5 Vdc input is applied to the circuit | [5] | CO4 | Analyze | | | Rf = 10 KΩ | | Ì | | | | $Rin = 5K\Omega$ V_{n} V_{n} | | | | | | b) With the help of diagram explain the working of OPAMP as non-inverting comparator? | [5] | CO4 | Understa
nd | | | c) Calculate the output voltage for the circuit shown in the figure | [5] | CO4 | Analyz | | | 1K _D 1K _D 1K _D 1K _D 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | d) With the help of suitable diagram explain the following i) Slew rate ii) Virtual ground | [5] | CO4 | Understa
nd | | | | | | |