Total No. of Questions – [3]

Total No. of Printed Pages: 4

| G.R./PRN |   | PAPER |       |      | 7    |
|----------|---|-------|-------|------|------|
| No.      | · | CODE  | 0/12- | 203B | Pog  |
|          | • |       |       |      | - 6, |

## DECEMBER 2022 (INSEM+ ENDSEM) EXAM

F.Y. B. TECH. (SEMESTER - I)

COURSE NAME: BASIC ELECTRONICS ENGINEERING

COURSE CODE: ET10203B

(PATTERN 2020)

Time: [2Hr]

[Max. Marks: 60]

- (\*) Instructions to candidates:
- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data where ever required

| Question<br>No. | Question Description                                                                                                                                                                                                              | Marks | CO<br>mapped | Blooms<br>Taxonomy<br>Level |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|-----------------------------|
| Q.1             | <ul> <li>i) For a Center Tapped FWR, if PIV of each diode is 12.5 V, then calculate the peak value of transformer secondary voltage.</li> <li>a. 5.9 V</li> <li>b. 11.8 V</li> <li>c. 13.2 V</li> <li>d. 13.9 V</li> </ul>        | [2]   | CO1          | Understand                  |
|                 | ii) Consider a practical diode is reverse biased with a 10V battery and a series resistor of 1K. Calculate the voltage across the diode. a. 0.6 V b. 9.4 V c. 10 V d. 0 V                                                         | [2]   | CO1          | Apply                       |
|                 | <ul> <li>iii) Which process of the Electron-hole pair is responsible for emitting of light?</li> <li>a) Generation</li> <li>b) Movement</li> <li>c) Recombination</li> <li>d) Diffusion</li> </ul>                                | [2]   | CO1          | Understand                  |
|                 | iv) Two LED's are connected in series along with limiting resistance. It is supplied with 15 V DC supply and drop across each LED is 1.5 V, the value of limiting resistance for 10 mA current is a) $400 \Omega$ b) $750 \Omega$ | [2]   | CO1          | Apply                       |
|                 | c) 900 Ω d) 1200Ω                                                                                                                                                                                                                 |       |              |                             |

|                                                                                                                                                                                                 |     | <del></del> |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|------------|
| v) What is the average value of full wave rectifier, for Vp (out) = 30V                                                                                                                         |     |             |            |
| a) 31.85 V b) 45.65 V                                                                                                                                                                           | [2] | CO1         | Apply      |
| c) 19.09 V d) 15.9 V                                                                                                                                                                            |     |             |            |
| vi) Each diode in a center-tapped full-wave rectifier is biased and conducts for of the input cycle.  a) forward, 90 degree b) forward, 180 degree c) reverse, 90 degree d) reverse, 360 degree | [2] | CO1         | Understand |
| vii) In Half Wave Rectifier, if peak value of output is 12.5 V, then the peak value of its input is  a) 12.5 V b) 22.5 V  c) 11.8 V d) 13.2 V                                                   | [2] | CO1         | Apply      |
| viii) Forward bias the depletion region and produces across the p-n junction  a. increases, potential voltage b. reduces, barrier potential c. increases, charge d. reduces, potential voltage  | [2] | CO1         | Understand |
| ix) Determine value of collector current Ic, for $\beta$ =150 and base current I <sub>B</sub> = 25 $\mu$ A.  a) 10 mA b) 0.45 mA c) 3.7 mA d) 45 $\mu$ A                                        | [2] | CO2         | Apply      |
| x) For voltage divider biasing circuit, if R1=1.5 KΩ & R2=680 Ω, VCC = 20V. What is the value of VB (voltage at Base terminal)?  a) 3.12 V b) 6.24 V c) 10 V d) 11 V                            | [2] | CO2         | Apply      |
| xi) In Common Emitter amplifier, if base current is 80 µA and beta is 50. What is the value of collector current?  a) 20 mA b) 200 uA c) 2 A d) 4 mA                                            | [2] | CO2         | Apply      |
| xii) What is the phase shift between input and output signal for BJT Common Base configured amplifier?                                                                                          | [2] | CO2         | Apply      |

|     | 1) 1000                                                                                                                                                                                                                                                                           |     | - <del>[</del> | <del></del> |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------|-------------|
|     | a) 0° b) 180° d) 360°                                                                                                                                                                                                                                                             |     |                |             |
|     | c) 270°  xiii) In transistor amplifier circuit, VCC applied as 14 V.  For maximum amplification of input signal at its output, what will be the value of VCE required?  a) 14 V  b) 0.7 V  c) 7 V  d) 1.4 V                                                                       | [2] | CO2            | Apply       |
|     | xiv) In a transistor, $I_C$ = 100 mA and $I_E$ = 100.2 mA. The value of $\beta$ is                                                                                                                                                                                                | [2] | CO2            | Apply       |
|     | xv) In RC phase shift oscillator producing output at f = 500 Hz, R = 7.5 Kohm then C =  a) 0.01 micro F  b) 0.017 micro F  c) 0.012 nF  d) 0.001 micro F                                                                                                                          | [2] | CO2            | Apply       |
| Q2  | a) Draw voltage divider biasing CS amplifier circuit and Explain the significance of coupling and bypass capacitors connected in the circuit.                                                                                                                                     | [5] | CO3            | Understand  |
|     | b) Explain Turning OFF process of SCR with circuit diagrams.                                                                                                                                                                                                                      | [5] | CO3            | Understand  |
|     | c) Calculate VGS and VDS for the MOSFET with voltage divider bias circuit, given parameters are R1 = 100 K $\Omega$ , R2 = 15 K $\Omega$ , RD = 200 $\Omega$ , VDD = 24 V. Assume this particular MOSFET has minimum values of $I_D(on)$ = 200 mA at VGS = 4 V and VGS(th) = 2 V. | [5] | CO3            | Apply       |
|     | d) Sketch the internal structure of n-channel Enhancement type MOSFET and explain its drain characteristics?                                                                                                                                                                      | [5] | CO3            | Understænd  |
| Q.3 | Solve any three out of four questions  a) Illustrate the working of op-amp as a voltage regulator using suitable diagram                                                                                                                                                          | [5] | CO4            | Understand  |
|     | b) Explain the following terms related to a differential amplifier with necessary diagrams i) Virtual ground ii) Slew Rate                                                                                                                                                        | [5] | CO4            | Understand  |
|     | c) If $V_1$ = 2V and $V_2$ = 1.5V, calculate the output voltage.<br>Also calculate output for the values of $V_1$ = -2V and $V_2$ = 4V.                                                                                                                                           | [5] | CO4            | Apply       |

|                                                       |                                          |     |     | Rimer CC 300 |
|-------------------------------------------------------|------------------------------------------|-----|-----|--------------|
| •                                                     |                                          |     | •   |              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | V <sub>ort</sub>                         |     |     |              |
| d) Draw the circuit dia<br>waveforms of op-amp o      | gram and sketch the output<br>comparator | [5] | CO4 | Apply        |