Total No. of Questions - [4]

Total No. of Printed Pages: 03

G.R. No.	

PAPER CODE U112-2018/RE-Backlog

DECEMBER 2021 (INSEM+ ENDSEM) EXAM

F.Y. B. TECH. (SEMESTER - I)

COURSE NAME: CALCULUS

COURSE CODE: ES10201B

(PATTERN 2020)

Time: [2Hr]

[Max. Marks: 60]

- (*) Instructions to candidates:
- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data where ever required

Q.1 i) If
$$u = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$$
 then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is a) $\sin u$ b) $\cos u$ c) $\cos(2u)$ d) $\sin(2u)$

ii)
$$u = \frac{\sqrt{x} + \sqrt{y}}{\sqrt[3]{x} + \sqrt[3]{y}} \text{ then } x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \text{ is}$$

$$a)12u \quad b) -12u \quad c) \frac{1}{12} \quad d) \frac{1}{12}u$$

iii)
$$u = \tan^{-1}\left(\frac{x}{y}\right)$$
 then $\frac{\partial u}{\partial x}$ is
$$a) \frac{y}{x^2 + y^2} \qquad b) \frac{x}{x^2 + y^2} \qquad c) \frac{2x}{x^2 + y^2} \qquad d) \frac{2y}{x^2 + y^2}$$

iv) If
$$u = x^y$$
 then $\frac{\partial u}{\partial y}$ is

a) $x^{y-1} \log x$ b) $y x^{y-1}$ c) $x^y \log x$ d) $x^y \log y$

v) If
$$u = \log\left(\frac{x^3 + y^3}{x^2 + y^2}\right)$$
 then e^u is homogeneous function of degree
a) 0 b)1 c)2 d)-2

vi) Area of an triangle is
$$\Delta = \frac{1}{2}bc \sin A \frac{3\pi}{4}$$
 If $A = \frac{\pi}{4}$, & errors in b, c, and A is 1%, 2%, and 3%, [2] Then % error in area is a)3 b) $3 + \frac{3\pi}{4}$ c) $2 + \frac{3\pi}{4}$ d) $3 + \frac{\pi}{2}$

vii) If
$$x = r \cos \theta$$
 and $y = r \sin \theta$ then $\frac{\partial(x,y)}{\partial(r,\theta)}$ is

a) r^2 b) $-r$ c) r d) $\frac{1}{r}$

```
viii) If f(x,y) = x^4 + y^4 - 2(x-y)^2 then minimum value at (-\sqrt{2}, \sqrt{2}) is (a) 8 (b) 4 (c) -4 (d) -8
   ix) If rt-s^2>0 and r<0 at (a,b) then function has
                      a) Maxima at (a,b)
                     b) Minima at (a,b)
                     c) The case is undecided
                     d) Saddle point at (a,b)
  x) If f(x,y) = xy (a - x - y) then stationary points are
                      a) (0,0) and (a,a)
                     b) (0,0) and \left(\frac{a}{3}, \frac{a}{3}\right)
                     c) (0,0), (a,0), (0,a) and (\frac{a}{3}, \frac{a}{3})
                     d) (0,0) and (\frac{-a}{3}, \frac{-a}{3})
                                                                                                                                          [2]
 xi) For the function f(x) = x in the interval -\pi < x < \pi the values of a_n and b_n are
         (a) \frac{(-1)^n}{\pi}, 0 (b) \frac{-2(-1)^n}{n\pi}, \frac{(-1)^n}{n\pi} (c) 0, \frac{-2(-1)^n}{n}
                                                                                                   (d) None of these
xii) The value of \int_{0}^{1} \frac{dx}{\sqrt{-\log x}} is
                                                                                                                                         [2]
(a) \frac{\sqrt{\pi}}{3} (b) \sqrt{2\pi} (c) \sqrt{\pi} (d) None of thèse xiii) The value of \int\limits_{0}^{\pi/2} \frac{\mathrm{d}\theta}{\sqrt{\sin\theta}} \cdot \int\limits_{0}^{\pi/2} \sqrt{\sin\theta} \, \mathrm{d}\theta is
                                                                                                                                        [2]
                                        (b) \pi (c) \frac{\pi}{2}
            (a)1
                                                                                             (d) 0
xiv) The value of \int_{-\infty}^{\infty} x^7 e^{-2x^2} dx is
                                                                                                                                        [2]
                                      (b) \sqrt{2\pi} (c) \frac{3}{16}
                                                                                            (d) 120 \sqrt{\pi}
```

(a) $\frac{16\pi}{35}$

(b) $\frac{15\pi}{42}$ (c) $\frac{16\pi}{1155}$

(d) None of these

[2]

[2]

[2]

[2]

Q2 Solve any two out of three

- $a) \frac{dy}{dx} = \frac{tany 2xy y}{x^2 xtan^2y + sec^2y}$ [5]
- $b) \frac{dy}{dx} y \tan x = y^4 \sec x$ [5]
- c) A body originally at 80°C cools down to 60°C in 20 minutes, the temperature of the air being 40°C What will be the temperature of the body after 40 minutes [5] from the original?

Q.3 Solve any two out of three

- a) Trace the curve $x(x^2 + y^2) = a(x^2 y^2)$, where a > 0
- b) Trace the curve $r = a \cos(2\theta)$ [5]
- c) Trace the curve $x = a\cos^3\theta$, $y = a\sin^3\theta$ [5]

[5]

- Q.4 Solve any two out of three
 - a) Evaluate $\iint dx \, dy$, Where R is the region bounded by $x^2 = y$ and $y^2 = x$ [5]
 - b) Evalute $\int_0^1 \int_0^{1-x} (x+y) dy \, dx$ [5]
 - c) show that $\int_0^a \int_0^{\sqrt{a^2 x^2}} e^{-x^2 y^2} dx dy = \frac{\pi}{4} (1 e^{-a^2})$ [5]