Total No. of Questions - [4]

G.R./PRN	
No.	

Total	No.	of	Printed	Pages:4
-------	-----	----	---------	---------

V112-201A (RE)

RE/Backlog-ES/0201A

CODE

DECEMBER 2022 (INSEM+ ENDSEM) EXAM

F.Y. B. TECH. (SEMESTER - I)

COURSE NAME: LINEAR ALGEBRA

COURSE CODE: ES10201A (PATTERN 2020)

Time: [2Hr]

[Max. Marks: 60]

- (*) Instructions to candidates:
- Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data where ever required

Questi	Question Description		Marks	CO	Blooms
on No.				mapp	Taxonomy
				ed	Level '
Q.1	i) In solving the system of	equations AX=B in four variables if	[2]	CO1	Understand
	system has three free para	meter solutions then Rank of]
	matrix A is				1
	A] RankA = 0	B] RankA = 1			
	C] RankA = 2	D] RankA = 3			
	iilLet A be 3 by 3 orthogona	al matrix then Rank of matrix A is	[2]	CO1	Understand
		Bl RankA = 2	[-]	002	
	C] RankA = 3	D] RankA = 4		·	
·	[1				
	iii)Rank of the matrix A= [1]	2 1 is			
	l1	1 11	[2]	001	Understand
	A] RankA = 1	B] RankA = 2	[-]	CO1	Onderstand
	C] RankA = 3	D] RankA = 4			
	iv) In solving the homogene	ous system of linear equations AX		001	TT:= d = +
		ılar matrix of order 3 then above	[2]	CO1	Understand
	system has				
	A] Only trivial solution	B Non trivial solutions			
	C] AX=0 has no solutions				
	v)Let A be the Skew symme	tric matrix of order 3 then rank of	[2]	CO1	Understand
	A is	man or order o trich rank of	رحا		
	A] Less than 3	B] greater than 3			
	C] Equal to 3	D] None of above		1	

NYVY 1 1 0 1			
vi)Which of the following is not a subspace of the vector Space $V = \mathbb{R}^2$	[2]	CO2	Understand
A] W= $\{(0,0), (1,1), (2,2)\}$ B] W= $\{(0,0)\}$ C} W= $\{(x,0) x \in \mathbb{R}\}$ D] W= $\{(x,3x) x \in \mathbb{R}\}$	2		
vii) Set of vectors $S = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$ is A] S is Linearly Independent but does not span \mathbb{R}^2 B] S Linearly Independent and span \mathbb{R}^2 C] S is Linearly dependent but span \mathbb{R}^2 D] S is Linearly dependent and does not span \mathbb{R}^2	[2]	CO2	Understand
[1 1 1]			
viii) Row space Basis of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}$ are $A] B = \{ \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	[2]	CO2	Understand
A) $B = \{[1 \ 1 \ 1]\}, [0 \ 1 \ 1], [0 \ 0 \ 0]$ B) $B = \{[1 \ 1 \ 1]\}, [0 \ 1 \ 1]$ C) $B = \{[1 \ 1 \ 1]\}, [0 \ 1 \ 1], [3 \ 3 \ 3]$ D) $B = \{[1 \ 1 \ 1]\}$,	
ix) Column space Basis of the matrix $A = \begin{bmatrix} 2 & 2 & 2 \\ 3 & 3 & 3 \\ 4 & 4 & 4 \end{bmatrix}$ are	[2]	CO2	Understand
A] $B = \left\{ \begin{bmatrix} 2\\3\\4 \end{bmatrix}, \begin{bmatrix} 2\\0\\0 \end{bmatrix} \right\}$ B] $B = \left\{ \begin{bmatrix} 2\\3\\4 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\}$ C] $B = \left\{ \begin{bmatrix} 2\\3\\4 \end{bmatrix} \right\}$ D] $B = \left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\0 \end{bmatrix} \right\}$			
x) Dimensions of vector space of all 3 by 3 skew symmetric matrices is	[2]	CO2	Remember
A] 1 B] 3 C] 6 D] 9			
xi) If $A : \mathbb{R}^3 \to \mathbb{R}^3$ is regular transformation, then Kernel of Linear Transform is A] $Ker A = \{(x, x, x) x \in \mathbb{R}\}$ B] $Ker A = \{(x, 0, 0) x \in \mathbb{R}\}$ C] $Ker A = \mathbb{R}^3$ D] $Ker A = \{(0, 0, 0) x \in \mathbb{R}\}$	[2]	CO3	Apply
xii) If $A : \mathbb{R}^3 \to \mathbb{R}^3$ is Non-Singular transformation, then Dimensions of Kernel of Linear Transform are A] $Dim Ker A = 3$ B] Dim Ker $A = 0$ C] $1 \le Dim Ker A \le 2$ D] Dim Ker $A \ge 3$	[2]	соз	Understand
xiii)If $A : \mathbb{R}^3 \to \mathbb{R}^3$ is regular transformation, then Dimension of Image A are A] Dim Image $A = 0$ B] Dim Image $A = 1$ C] Dim Image $A = 2$ D] Dim Image $A = 3$	[2]	CO3	Understand

xiv) Let $A : \mathbb{R}^3 \to \mathbb{R}^3$ is defined as $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 3 \\ 1 & 1 & 4 \end{bmatrix}$, then Basis of Image of A are A] Image Basis = $\left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \right\}$ B] Image Basis = $\left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \right\}$ C] Image Basis = $\left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$ D] Image Basis = $\left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \right\}$	[2]	COS	3 Understand
xv) Let $A : \mathbb{R}^3 \to \mathbb{R}^3$ is any Linear Transformation and with Nullity of $A = 3$ then possible matrix of Linear Transform is $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	[2]	CO3	Understand
Q2 Solve any two out of three			
a) Apply the Gram-Schmidt orthogonalization process to find orthogonal basis, for the set of the vectors $S = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \right\}$	[5]	CO4	Apply
b) For the vectors $v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ $v_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ $v_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ Find	[5]	CO4	Remember
I) $\langle V_2, V_3 \rangle$ II) Proj (V_2, V_1) III)) V_3 IV) Angle between V_2 &, V_3 c) Apply the Gram-Schmidt orthogonalization process to find orthogonal basis, for the set of the vectors = $\{v_1 = t, v_2 = t^2, v_3 = t^3\}$ of polynomial space, with the inner product $\langle u, v \rangle = \int_{-1}^{1} uv dt$	[5]	CO4	Apply
Q.3 Solve any two out of three a) Find all Eigen values and Eigen Vectors of the matrix $A = \begin{bmatrix} 7 & 1 \\ -9 & 1 \end{bmatrix}$	[5]	CO5	Remember

b) Does the matrix $A = \begin{bmatrix} 7 & 0 \\ -4 & 3 \end{bmatrix}$ is diagonalizable and if yes find diagonalization of it c) Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{bmatrix}$ and use it find A^{-1} if it exist. Q.4 Solve any two out of three a) Using orthogonal diagonalization find canonical form of the quadratic form $Q(x,y)=14xy$ b) Find Symmetric matrix corresponding to given quadratic form and hence determine the signature and Index of the quadratic form $Q(x,y,z)=6x^2-4xy+4xz+3y^2-2yz+3z^2$	
$\begin{bmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{bmatrix} \text{ and use it find } A^{-1} \text{ if it exist.}$ $Q.4 \qquad \textbf{Solve any two out of three}$ a) Using orthogonal diagonalization find canonical form of the quadratic form $Q(x,y)=14xy$ b) Find Symmetric matrix corresponding to given quadratic form and hence determine the signature and Index of the quadratic form $Q(x,y,z)=6x^2-4xy+4xz+3y^2-2yz+$	Understand
Q.4 Solve any two out of three a) Using orthogonal diagonalization find canonical form of the quadratic form Q(x,y)=14xy b) Find Symmetric matrix corresponding to given quadratic form and hence determine the signature and Index of the quadratic form Q(x,y,z)=6x²-4xy+4xz+3y²-2yz+	Apply
a) Using orthogonal diagonalization find canonical form of the quadratic form $Q(x,y)=14xy$ b) Find Symmetric matrix corresponding to given quadratic form and hence determine the signature and Index of the quadratic form $Q(x,y,z)=6x^2-4xy+4xz+3y^2-2yz+$	
quadratic form $Q(x,y)=14xy$ b) Find Symmetric matrix corresponding to given quadratic form and hence determine the signature and Index of the quadratic form $Q(x,y,z)=6x^2-4xy+4xz+3y^2-2yz+$ [5]	
form and hence determine the signature and Index of the quadratic form $Q(x,y,z)=6x^2-4xy+4xz+3y^2-2yz+$ [5]	Understand
322	Remember
c) Find Symmetric matrix corresponding to quadratic form $Q(x,y,z)=-2x^2+2xy-2xz-2y^2+2yz-2z^2 \text{ and hence determine the nature and canonical form}.$	Remember