Total No. of Questions – [0)б]
-----------------------------	-----

Total No. of Printed Pages:

	May 2022 - END	CENT EVANT	
PRN No.		Paper Code	
	•	10141110.	of Fiffied Pages:
		Total IVO.	or Littled Lages.

May 2022 - ENDSEM EXAM

B. TECH. (MECHANICAL) (SEMESTER - II) COURSE NAME: SOLAR AND WIND ENERGY COURSE CODE: Course code: IOEUA40183E (PATTERN 2018)

Time: [1Hr]

[Max. Marks: 30]

Instructions to candidates:

- Answer Q.1 OR Q.2, Q.3 OR Q.4, Q.5 OR Q.6.
- Figures to the right indicate full marks. 2)
- 3) Use of scientific calculator is allowed
- 4) Use suitable data where ever required

Question No.	Question Description	Marks	СО	Dleam
		11101115		Blooms
			mapped	Taxonomy
Q.1 a	a) Identify the difference between	4	5	Level
	Wind Mill and Wind Turbine. Give		3	III
	at least one application of each.			
Q.1 b	b) Differentiate clearly Horizontal	6	5	TTT
	and Vertical Axis Turbine w. r. to		3	III
	Output power, Starting, Efficiency,			
	Cost, Wind Direction, Gear Box and			
	Generator, Maintenance in			
	tabulated form.			
	OR			
Q2 a	a) Enumerate the site selection	4	4	II
	factors for Wind Turbine			11
	Installation/s.			
Q2 b	b) Classification of Wind Turbines	6	4	III
	based on minimum six parameters.			111
	是一种一种的一种,但是一种一种一种一种一种一种一种一种一种一种一种一种一种一种一种一种一种一种一种			
Q.3 a	a) a) You made a homemade wind	4	5	III
	turbine that has 3 blades that are			111
	one meter long each. You live at sea			
	level so the air density = 1.23			
	kg/m3. The wind is blowing at 12			
	meters per second. What is the			
	theoretical power output of			
	turbine?			

Q.3 b	Distinguish the function of 1)	6	5	III	
	Rotor, 2) Hub, 3) Gear Box, 4)				
	Generator, 5) Brake 6) Nacelle, 7)				
	Yaw Mechanism. 8) Tower with				
	labelled diagram.				
	OR				
Q.4 a	a) What is aerofoil shape of Turbine	4	5	III	
	blade? Draw Schematic diagram				
	showing angle of attack.				
Q.4 b	Apply equation of Power available	6	6	IV	
	in Wind Energy. Explain design of				
	rotor from Blade Length, Material,				
	Shape, no. of blades etc. and Wind				
	Velocity.				
Q.5 a	With labelled schematic diagram	4	5	II	
	explain the any two types of				
	generators used in Wind Turbines.				
Q.5 b	What are the issues occur while	6	6	III	
	integrating wind energy with power				
	grids?				
	OR				\neg
Q.6 a	What is the basic comparison	4	5	III	_
	between HVDC and HVAC?				
Q.6 b	Judge the function of Electrical	6	6	III	\dashv
	Collectors? With schematic diagram				
	explain three typical layouts of				
	electrical collectors for wind farms.				