G.R. No.	PAPER CODE UIII - 2038 (RF9)
	V-1-1-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-

MAY 2022 (INSEM+ ENDSEM) EXAM F.Y. B. TECH. (SEMESTER - II)

C	UUK	SE NAME: BASIC ELECTRONICS ENGINEERING		
C	OUR	SE CODE: ET10203B		
		(PATTERN 2020)		
•		r] [Max. Marks: 6	arks: 60]	
(* 1) 2) 3)	Figu Use	uctions to candidates: res to the right indicate full marks. of scientific calculator is allowed suitable data where ever required		
Q.1		Solve the following		
	i)	In Half Wave Rectifier, if peak value of output is 17.5 V, then the peak value of its input is a) 17.5 V b) 22.5 V c) 16.8 V d) 18.2 V	[2]	
	ii)	A half-wave rectifier has an input voltage of 240 V r.m.s. If the step-down transformer has a turns ratio of 8:1, what is the peak load voltage? (consider Si diode drop) a) 27.5 V b) 86.5 V c) 41.7 V d) 42.4 V	[2]	
	iii)	A forward potential of 15V is applied to a Si diode. A resistance of 5 K Ω is also in series with the diode (Assume practical diode model). The current is	[2]	
		a) 2.86 mA b) 1.5 mA c) 3 mA d) 0.7 mA		
	iv)	A half-wave rectifier with Si diode has input voltage of 170 V peak. If the step-down transformer has turns ratio of 2:1, what is the peak output voltage? a) 48.3 V b) 40.7 V c) 84.3 V d) 1.4 V	[2]	

v)	what is the minimum PIV rating of each diode in center tap rull wave rectifier, if its Vp(out) is equal to 24.3 V? a) 49.3 V b) 24.7 V c) 48.6 V d) 1.4 V	[2]
vi)	Determine the peak output voltage for the full wave bridge rectifier. Assume silicon diode. The transformer is specified to have a 10 V rms secondary voltage and 120 V across the primary winding. a) 8.6 V b) 12.74 V c) 14.14 V d) 93.7 V	[2]
vii)	Determine the PIV rating for the full wave bridge rectifier. Assume all four are silicon diodes. The transformer is specified to have a 12 V rms as secondary voltage for the standard 140 V across the primary. a) 16.3 V b) 10 V c) 8.2 V d) 15 V	[2]
viii)	The average value of Half-Wave rectified output voltage is if its peak output voltage is 20 V. a) 20.28 V b) 6.37V c) 9.54 V d) 20.7 V	[2]
ix)	In a transistor, I_C = 100 mA and I_E = 100.2 mA. The value of β is	[2]
x)	In a transistor if $\beta=100$ and collector current Ic is 10 mA, then the emitter current IE is	[2]
xi)	The current gain (β) of a transistor in common emitter configuration is 40. If the collector current changes by 160mA, then required change in the base current isfor constant VCE. a) 4 mA b) 0.4 mA c) 40 mA	[2]

	xii)	In RC phase shift oscillator producing output at $f=500$ Hz, $R=7.5$ Kohm then $C=$. a) 0.01 micro F b) 0.017 micro F c) 0.012 nanoF d) 0.001 micro F	
	xiii)	Determine value of collector current Ic, for $\beta{=}150$ and $~I_B{=}430~\mu A$. a) 100 mA b) 46.8 mA c) 64.5 mA d) 80.3 mA	[2]
	xiv)	For voltage divider biasing circuit, if R1=100 K Ω , R2= 15 K Ω , VCC=24V. What is the value of VB (voltage at Base terminal)? a) 3.13 V b) 4.53 V c) 24 V d) 12 V	[2]
	xv)	For a BJT fixed bias circuit, determine base current $I_B,$ if $V_{BB}{=}5V$ V_{BE} = 0.7V and R_B = 10K $\Omega.$ a) 650 μA b) 430 μA c) 340 μA d) 100 μA	[2]
Q.2		Solve any three questions out of four	
	a)	Sketch the internal structure of n-channel Enhancement type MOSFET and explain its transfer characteristics?	[5]
	b)	Calculate V_{GS} and V_{DS} for E-MOSFET voltage divider biasing circuit, with R_1 =200 $K\Omega$, R_2 =20 $K\Omega$, R_D = 200 Ω , R_S =0 Ω and V_{DD} = 20 V. Assume this particular E-MOSFET has minimum values of $I_{D(on)}$ = 200 mA at V_{GS} = 4 V and $V_{GS(th)}$ = 1 V.	[5]
	c)	Draw and explain V-I characteristics of SCR for different values of gate current.	[5]
	d)	Draw and explain Turn OFF process of SCR with circuit diagram	[5]
Q.3		Solve any three questions out of four	
	a)	Draw op-amp IC 741 symbol and explain the importance of its each terminal.	[5]
	b)	Explain the following terms related to a op-amp with necessary diagrams i) Virtual ground ii) Slew Rate	[5]

c) Calculate closed loop gain of the circuit shown below and also find out its output voltage if 1.5 V of DC input signal is applied to the circuit.

d) With the help of block diagram explain different blocks of OPAMP.

[5]

-END---