Total No. of Questions – [4]

Total No. of Printed Pages: 04

G.R. No.	

PAPER CODE	U111-201A(RE)

MAY 2022 (INSEM+ ENDSEM) EXAM F.Y. B. TECH. (SEMESTER - II) COURSE NAME: Linear Algebra COURSE CODE: ES10201A

(PATTERN 2020)

Time: [2Hr]

[Max. Marks: 60]

- (*) Instructions to candidates:
- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data where ever required

Q.1 Solve the following

i) Rank of the matrix A of order 3X3 having all minors of order 3 zero and having nonzero minor of order 2 is		
A] Equal to 0		
B] Equal to 1		
C] Greater than or equal to 2		
D] equal to 2		
ii) Non zero Solution of $x + y = 1, 2x + 3y = 2$ is	[2]	
A] $x=0, y=0$		
B] x=0 ,y= 1		
C] x=1 ,y= 0		
D] No solution		
iii) In solving the system of equations AX = B if $\rho(A) = 3 \& \rho([A:B]) = 3$	[0]	
and having 3 number of unknown variables. Then given system has	[2]	
A] No Solution		
B] Unique solution		
C] One free parameter solution		
D] Two free parameter solutions		
- 성향 날려 소리는 것이라 있는 것을 수가 없는 것이다. 한 것을 것 같아요. 그는 것이 것을 가지 않는 것이다.		
iv) Rank of the non-singular matrix A of order 4X4 is	[2]	
A] 4 B] 3 C] 2 D] 1	[4]	

v) If A is non-singular matrix then Non Homogenous system of equation AX=B has A] Unique solution B] N0 solutions C] Infinite solutions D] No conclusion	[2]
<pre>vi) Which of the following set is subspace of R³? A] W= { (x, y, z) / x=y & z=1 } B] W= { (x, y, z) / x + y + z=0 & y + z=0 } C] W= { (x, y, z) / x + y + z=1 } D] W= { (x, y, z) / 2x+3y+2z=1 }</pre>	[2]
 vii) Which of the following is true for the Set of vectors- S = {v₁ = 1, v₂ = t, v₃ = t²} A] Linearly dependent set of polynomial vector space B] Linearly dependent and orthogonal set of polynomial vector space C] Linearly Independent set of polynomial vector space D] All of the above statements are true. 	[2]
viii) Let V be vector space of set of all polynomials of degree ≤ 1 V= $\{a_0 + a_1 t / a_0, a_1 \in \mathbb{R}\}$ then Basis of V are A] $\{0\}$ C] $\{0, t\}$ D] $\{t\}$ D] $\{1, t\}$	[2]
ix) Dimensions of the row space of the matrix $A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \\ 3 & 10 \end{bmatrix}$ are A] Row Space of A is Infinite dimensional B] Dim Row Space A= 0 C] Dim Row Space A= 1 D] Dim Row Space A= 2	[2]
x) Basis of the Column space of the matrix $A = \begin{bmatrix} 1 & 2 & -1 \\ 4 & 8 & -3 \end{bmatrix}$ are A] $\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \}$ B] $\{ \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \}$ C] $\{ \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \end{bmatrix} \}$ D] $\{ \begin{bmatrix} -1 \\ 1 \end{bmatrix} \}$	[2]
xi) Which of the following is Linear Transformation from $\mathbb{R}^2 - \longrightarrow \mathbb{R}^3$? A] T(x,y)= (x+y,xy, x) B] T(x,y)= (x-y y, x) C] T(x, y)= (x+y y+3,y-x) D] T(x, y)= (1+2y, x-3y)	[2]
xii) Consider the Linear Transformation $A : \mathbb{R}^3 \to \mathbb{R}^3$ define as AX= Y Where A= $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ then dimensions of Im A are A] 1 B] 2 C] 3 D] 4	[2]

xiii) Consider the Linear Transformation $A : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ define as AX= Y Where A= $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 9 \end{bmatrix}$ then dimensions of Kernel A are [2] A] 1 B] 2 C] 3 D] 4 xiv) Linear Transformation Y = AX where A= $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ is B] Singular A] Regular [2] C] Orthogonal D] Composite xv) Linear Transformation Y = AX where A = $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 1 & 1 & 3 \end{bmatrix}$ is A] Regular B] Orthogonal C] Singular D] Composite [2]

Solve any two out of three

Q2

a) Let V=
$$\mathbb{R}^3 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid x, y, z \in \mathbb{R} \right\}$$
 with standard inner product defined as [5]

$$\langle \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3 \text{ then by Gram-Schmidt orthogonalization}$$
process find orthogonal basis of the set of vectors $S = \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}$

- b) Let V be a vector space of polynomials with inner product defined as [5] $\langle f(t), g(t) \rangle = \int_{-1}^{1} f(t)g(t)dt$ then by Gram-Schmidt orthogonalization process find orthogonal basis of set of vectors $S = \{v_1 = 1 \ v_2 = 1 + t, v_3 = t^2\}$
- c)) Let $V = \mathbb{R}^3 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid x, y, z \in \mathbb{R} \right\}$ with standard inner product defined as [5] $\left\langle \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \right\rangle = x_1 y_1 + x_2 y_2 + x_3 y_3$ then for the vectors $v_{1=} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, v_{2} = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}, v_{3=} \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$ find i) Projection of v_2 on v_1 ii) $||v_2||$ iii) Angle θ angle between vectors $v_1 \otimes v_3$

Q.3 Solve any two out of three

a) Find all Eigen values and Eigen vectors of the matrix A= $\begin{bmatrix} 14 & -10 \\ 5 & -1 \end{bmatrix}$	[5]
b) Check whether A is diagonalizable & if yes diagonalize it where $A = \begin{bmatrix} 5 & 2 \\ 2 & 2 \end{bmatrix}$	[5]
c)Verify Caley-Hamilton Theorem & use it to find A^{-1}	[5]

for the matrix $A = \begin{bmatrix} 7 & 1 \\ -9 & 1 \end{bmatrix}$

Q.4 Solve any two out of three

a) Find the symmetric matrix that corresponds to the following quadratic form [5] and hence determine the nature of the quadratic form $Q(x, y, z)=-2x^2 + 2xy - 2xz - 2y^2 + 2yz - 2z^2$

b) Find Signature of the quadratic form [5] $Q(x, y, z)=2x^2 + 2xy + 2xz + 2y^2 - 2yz + 2z^2$

c) Using orthogonal digitalization find Canonical form corresponding to quadratic [5] form Q(x, y)= $-4x^2 - 4y^2 + 6xy$

С С

END###