NUMBER OF STREET

and the state of t

Total No. of Printed Pages: 1

O.D. N.										
G.R. No.	the control of the second									
ļ		١								

Q.P-code- P122-221 PSE/ESE

May 2022 / INSEM+ENDSEM

F. Y. M. TECH. (WREE) (SEMESTER - II)

COURSE NAME: Open Channel Hydraulics

COURSE CODE: CVPA12201

(PATTERN 2020)

Time: [3 Hours]

[Max. Marks: 60]

- (*) Instructions to candidates:
- 1) All Questions are compulsory
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data where ever required
- Q.1 a A most economical trapezoidal channel has side slopes equal to 3 (H):4 (V) and bed slope of 6 1 in 2500. Find the optimum dimensions if it is to carry a discharge of 0.6 m³/s. Assume b A rectangular channel is to carry a certain discharge at critical depth. If the section is to have a minimum perimeter show that ye= 3B/4 Q.2 a In a rectangular horizontal channel a hydraulic jump occurs such that the depths before jump and after the jump are 0.5 m and 1.2 m respectively. Find the critical depth 4 b Discuss hydraulic jump in a gradually expanding channel 10 Q.3 a A river 100 m wide and 3.0 m deep has an average bed slope of 0.0005. Estimate the length of GVF profile produced by a low dam which raises the water surface just upstream if it by 1.50 m. Assume n = 0.035. Take 4 steps. O.4 a Show that a uniformly discharging side weir can be obtained by linear reduction in the area of flow. b Classify bottom racks in four categories. Draw spatially varied flow profiles for flow over 6 bottom rack 4 O.5 a Derive equation for velocity and discharge for a dam break problem
- Q.6 Route the following flood through a river reach for which K=12 h and X=0.2. At the start of 1 the inflow the outflow discharge is 10 m³/s. Plot the inflow and outflow hydrograph

,	Time (h)	, 0	6	12	18	24	30	36	42	48	54	
* 1967 (1956 a.⊬2).	Inflow m3/s	10	20	50	60	55	45	35	27	20	15	

b Derive continuity equation for gradually varied unsteady flow