Total No. of Questions - [06]

Total No. of Printed Pages: 02

G.R. No. 221 M0018

PAPER CODE P122-253 DE 16

May 2022 / INSEM+ENDSEM F. Y. M. TECH. (MECHANICAL DESIGN ENGINEERING) (SEMESTER - II)

COURSE NAME: ANALYSIS AND SYNTHESIS OF MECHANISM

COURSE CODE: MEPA12203 (PATTERN 2020)

Time: [3 Hours]

[Max. Marks: 60]

- (*) Instructions to candidates:
- 1) All Questions are compulsory
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data where ever required
- Q.1) a) Determine degree of freedom of mechanism shown in figure 1 6 Marks

Figure 1 b) What is the Kinematic Analysis of Planar Mechanisms? 4 Marks Explain in brief.

Q 2) a) A mechanism is shown in figure 2. Determine angular velocity of O_6D . Take $\omega_2 = 10$ rad/sec.

Figure 2

- b) Determine the angular velocity of BCD link for the question 2 4 Marks a.
- Q.3) a) Explain in detail Bobillier construction.

6 Marks

b) Describe Euler-Savary equation.

4 Marks

Q.4) a) Design a slider-crank mechanism to coordinate three positions 6 Marks of the input link and the slider for the following angular and linear displacements of the input link and the slider respectively: $\theta = 40^{\circ}$ $\theta_{12} = 120^{\circ}$ $s_{12} = 180 \text{ mm and } s_{12} = 300 \text{ mm}$

 $\theta_{12}=40^\circ$, $\theta_{13}=120^\circ$, $s_{12}=180$ mm and $s_{13}=300$ mm Take eccentricity of the slider as 20 mm.

- b) Determine the link lengths of the designed slider-crank 4 Marks mechanism and draw the neat sketch for question 4 a.
- Q.5) a) Design a four-link mechanism using analytical method to 6 Marks coordinate three positions of the input and the output links for the following angular displacements:

 $\theta_1 = 20^{\circ}, \theta_2 = 35^{\circ}, \theta_3 = 50^{\circ}, \varphi_1 = 25^{\circ}, \varphi_2 = 35^{\circ} \text{ and } \varphi_3 = 50^{\circ}$

- b) Determine the link lengths of the designed four bar linkage 4 Marks and draw the neat sketch for question 5 a.
- Q.6) a) Explain in detail the equation of coupler curve.

6 Marks

b) What is double points and symmetry?

4 Marks