Total No. of Questions - [6]

Total No. of Printed Pages: 2

G.R. No.

May/August 2021 / INSEM+ENDSEM

MAY 2022

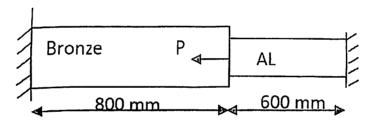
F. Y. M. TECH. (MECHANICAL DESIGN ENGINEERING) (SEMESTER - II)

COURSE NAME: FINITE ELEMENT METHOD

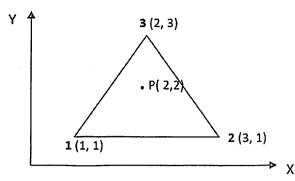
COURSE CODE: MEPA12201

(PATTERN 2020)

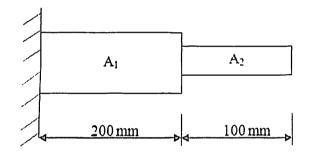
Time: [3 Hours]


[Max. Marks: 60]

[4]


- (*) Instructions to candidates:
- 1) All Questions are compulsory
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data where ever required
- Q.1) The structure shown in Figure is subjected to an increase in temperature [10] of 80 OC. Determine nodal displacement and element stresses.

Bronze: Area= 2400 mm², E= 83GPa, α =18.9 x10-6 per °C


AL: Area= 1200 mm², E= 70GPa, α =23 x10⁻⁶ per °C, P = 60 kN,

- Q.2) a) Illustrate the use of Pascal triangle to determine a shape function for 2D elements? Explain with example. Why displacement function should be symmetric about the axis of Pascal triangle?
 - b) For the triangular element shown, the nodal values of displacement in x and y directions respectively are $u_1 = 2.0$, $u_2 = 3.0$, $u_3 = 5.0$ and $v_1 = 1.0$, $v_2 = 2.0$, $v_3 = 3.0$. Find out for plane stress conditions (a) Displacement of point P, (b) Strain-displacement relationship (c) Element stress (d) strains

- Q.3 a) Obtain shape function for 4 node rectangular element using Lagrange [2] Interpolation formula. Use natural coordinates.
 - b) Evaluate integral using Gaussian Quadrature. [8] $I = \int_4^6 \int_{-2}^2 (1-x)^2 (4-y)^2 \, dx \, dy$
- Q.4 a) Find the un-damped natural frequencies of longitudinal vibration of the stepped bar as shown in Figure using lumped mass matrices. Given: Elastic Modulus E = 200 GPa, Area $A_1 = 400 \text{ mm}^2$, $A_2 = 200 \text{ mm}^2$, Density $\rho = 800 \text{ kg/m}^3$

- Q.5 a) Illustrate the Material and Geometric Nonlinearity with suitable [5] example
 - b) Elaborate Newton Raphson method and Modified Newton Raphson [5] method to solve non-linear problem using Finite Element Method.
- Q.6 a) Write finite element approach for any two types of analysis: [6]
 - i) Dynamic Analysis
 - ii) Crash Analysis
 - iii) Thermal Analysis
 - iv) Buckling Analysis
 - b) Illustrate patch test [4]