G.R. No.	PAPER CODE	U222-241(ESE)

May 2022 (ENDSEM) EXAM S.Y. B. TECH. (SEMESTER - II) - EFTC

	C	OURSE NAME: CONTROL SYSTEM	
	C	OURSE CODE: ETUA22201	
		(PATTERN 2020)	
	Time: [1Hr] [Max. Ma		arks: 30]
	(*) 1) 2) 3) 4)		
Q.1	a)	Estimate stability of closed loop system with following characteristic equation, using Routh-Hurwitz criterion, - s5+2s4+3s3+6s2+10s+15 =0	[4]
Q.1	b)	Draw the root locus of a feedback system whose OLTF is given as follows – $G(s)H(s) = \frac{k}{s(s+2)(s+3)}.$ Comment on stability.	[6]
Q.1	b)		[6]
Q.2	a)	Realize H(s)= $\frac{s(s+2)}{(s+1)(s+3)(s+4)}$ in parallel form.	[4]
Q.2	b)	Express State Transition Matrix. Derive any 3 properties of State Transition Matrix. OR	[6]
Q.2	b)	Compute state transition matrix given -	[6]

 $A=\begin{bmatrix}1&0\\1&1\end{bmatrix}$; $B=\begin{bmatrix}0\\1\end{bmatrix}$. Also find x(t) if $x(0)=\begin{bmatrix}1\\0\end{bmatrix}$. Use inverse Laplace

Transform Technique

Q.3 a) Calculate Pulse Transfer Function of the following Digital System. [4]

- Q.3 b) Draw and explain block diagram of a sampled data control system. [6]
 - Q.3 b) Elaborate advantages of digital control systems. Explain working of PID controller. [6]