Total No. of Questions - [03]

Total No. of Printed Pages: [02]

PRN No.	

Paper Code U222-264(ESE)

MAY 2022 - ENDSEM EXAM S.Y. B. TECH. (MECHANICAL) (SEMESTER - II) COURSE NAME: STRENGTH OF MATERIALS

	COURSE MAINE.	
	COURSE CODE: MEUA22204	
	(PATTERN 2020)	201
	[Max. Marks.	30]
	Instructions to candidates: 1) Figures to the right indicate full marks. 2) 'a' part of every question is compulsory 3) Use of scientific calculator is allowed 4) Use suitable data whereever required	
	What assumptions do we have to make when discussing	[4]
0	theory of pure bending?	[6]
	b) A 200 mm × 80 mm T' section beam is to be used as a simply supported beam of 6.75 m span. The web thickness is 6 mm and the flanges are of 10 mm thickness. Estimate what concentrated load can be carried at a distance of 2.25 m from the one support if the maximum permissible stress is 80 MPa. OR b) Estimate the maximum shear stress and shear stress at a distance of 30 mm above the neutral axis for a rectangular beam of 100 mm wide and 250 mm deep when subjected to a shear force of 50 kN.	[6]
	Q2 a) Elaborate the importance of the measurement of beam deflection.	[4]
	b) Derive the equation for slope and maximum deflection for a simply supported beam of length 'L' carrying a uniformly distributed load 'W' N/m over the entire span. OR	[6]
	b) A simply supported beam of length 6 m subjected to a point load of 50 kN at a distance of 4 m from left support. Estimate the deflection at the load point. Use the Macaulay method.	[6]

Take E = 200 GPa, I = $7.33 \times 10^7 \text{mm}^4$.

Q.3

- a) A steel bar with 38 mm diameter and 450 mm long is subjected to a torque of 1.27 kNm. The angular twist is found as 1.9220. Estimate elastic constant.

[4]

[6]

b) Derive the following expression

[6] b) Derive Euler's formula for buckling load for a column with both hinged ends.