Total No. of Questions - [03]

Total No. of Printed Pages: 02

G.R. No.			

PAPER CODE	
	Carry Secure File

MAY 2022 (ENDSEM) EXAM

T.Y. INFORMATION TECHNOLOGY (SEMESTER - II) COURSE NAME: SYSTEM PROGRAMMING

COURSE CODE: ITUA32184

(PATTERN 2018)

Marking Scheme

Time: [1Hr] [Max. Marks: 30]

Instructions to candidates:

- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data where ever required

Ouestion No.	Question Description	Marks
Q.1	a) Evaluate the first and follow for the following grammar	[4]
	E-> TQ	
	T-> FR	mot/life o
	Q-> + TQ - TQ E	
(8)	R->*FR /FR E	
	F-> (E) id	
	Solution:	Discu
	Calculation of first (2M)	mailwide
	Calculation of follow (2M)	alodge 9
	b) Construct LL(1) parser for following grammar	[6]
	$S \rightarrow iEtSS' \mid a$	
	$S' \to eS \mid \mathcal{E}$	
	$\mathrm{E} ightarrow \mathrm{b}$	mode of
	Solution:	BOURDS &
	First & follow table (2 M)	198 500 7
	Parsing Table (2M)	

	String acceptance table/ tree construction (2M)				
	OR				
	b) Construct SLR parser for	[6]			
	S->AA				
	A->aA b	ST .			
	Solution: Augmented grammar representation (1M)				
	DFA diagram (2.5M)				
	Parsing table (2.5M)				
	Tablig table (2.011)				
Q2	a) Explain type checking and type conversion with suitable example.	[4]			
	Solution:				
	Type checking with example (2M)				
	Type conversion with example (2M)				
	b) Translate the following expression to quadruple, triple and indirect triple-				
	a + b * c / e ↑ f + b * c	[6]			
	Solution:				
1	Quadruple (2M)				
	Triples (2M)				
	Indirect triple (2M)	-			
	OR				
	b) Construct three address code, quadruples, triples and indirect triple for the				
	following.				
	a = b * - c + b * - c	[6]			
	Solution:	[-]			
	Quadruple (2M) Triples (2M)				
	Indirect triple (2M)				
Q.3	a) Elaborate induction variable strength reduction with suitable example?	[4]			
	Solution:	[-1]			
	Induction variable strength reduction explanation (2M)				
	Example (2M)				
	bi((3) < T				
	b) Discuss peephole optimization techniques with suitable examples.				
	Solution: (MS) text to not always	[6]			
	Peephole optimization techniques explanation (3M)				
[6]	Example (3M)				
	S - IDSSIA - S				
	OR 3125 4 2				
	b) Illustrate code generation algorithm.				
	Solution:				
	Code generation algorithm (6M)	[6]			