|--|

PAPER CODE U 321 - 253 (ESE

## MAY 2022 (ENDSEM) EXAM

## T.Y. INFORMATION TECHNOLOGY (SEMESTER - II) COURSE NAME: DESIGN AND ANALYSIS OF **ALGORITHMS**

COURSE CODE: ITUA32183

(PATTERN 2018)

Time: [1Hr]

[Max. Marks: 30]

- (\*) Instructions to candidates:
- Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- Use suitable data where ever required 3)
- Q.1 Find all Hamilton path for given graph. Construct the state space [4] tree.



- Find all 3-colors of a graph with undirected connections  $v1\rightarrow v2$ , [6]  $v1\rightarrow v3$ ,  $v1\rightarrow v4$ ,  $v2\rightarrow v3$ ,  $v2\rightarrow v4$ ,  $v2\rightarrow v5$ ,  $v3\rightarrow v4$ ,  $v4\rightarrow v5$  using backtracking technique. OR
- Give the statement of sum -of subsets problem. Find all sum of b) [6] subsets for n=4, (w1, w2, w3, w4) = (11, 13, 24, 7) and M=31.Construct the portion of the state space tree
- What is branch & bound? Explain the role of bounding function Q.2 a) [4] in it using LC - search.

b) Give the formulation of modified knapsack problem using branch and bound and find the optimal solution using least cost branch and bound with n=4, m=15, (p1...p4) = (15 15 17 23), (w1...w4) = (3 5 6 9). Construct portion state space tree.

## OR

b) Solve the Travelling Salesman problem for given graph using [6] branch and bound algorithms. Construct state space tree.

| 00 | 5  | 1  | 10       |
|----|----|----|----------|
| 1  | 00 | 4  | 12       |
| 3  | 6  | 00 | 4        |
| 7  | 1  | 3  | $\infty$ |

Q.3 a) With the help of clique problem distinguish between decision [4] problem and optimization problem.

b) Prove that Clique Decision problem is NP-Complete using SAT [6] problem?

## OR

b) With the help of Linear search algorithm distinguish between [6] Non-deterministic algorithm and Deterministic algorithm.