Total No. of Printed Pages: [3]

G.R. No. PAPER CODE VII3 - 201 (1)

Dec 2023 (Backlog) EXAM

F.Y. B. TECH. (PATTERN 2018)

COURSE NAME: Engineering Mathematics II

COURSE CODE:

ES12181

Time: [2Hr]

[Max. Marks: 60]

(*) Instructions to candidates:

- 1) Use of scientific calculator is allowed
- 2) Use suitable data where ever required
- 3) All questions are compulsory

Que. No.	Question Description	Max. Marks	CO mapp ed	BT Level
Q1.	Choose the Correct options			
	i) The order and degree of the differential equation $\frac{d^2y}{dx^2} = \left[y + \left(\frac{dy}{dx}\right)^2\right]^{1/4}$ are	[2]	CO1	Understa nd
	(a) 4 and 2 (b) 1 and 2 (c) 1 and 4 (d) 2 and 4			
	ii) The solution of the DE $\frac{dy}{dx} + y = e^{-x}$ is (a) $y = (x + c) e^{x}$ (b) $ye^{x} + x = c$	[2]	CO1	Rememb er
	(c) $ye^{x} = x + c$ (d) None of these iii) The DE M (x, y) dx + N (x, y) dy = 0 is an Exact DE if (a) $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$ (b) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$ (c) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ (d) $\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = 1$	[2]	CO1	Rememb er
	iv) The general solution of the DE $\frac{dy}{dx} = 3x^2y + 2y$ is (a) $y = x^3 + 2x + c$ (b) $y = e^{x^3} + 2x + c$ (c) $y = x^3 - 2x + c$ (d) $y = ce^{(x^3 + 2x)}$	[2]	CO1	Rememb er
	v) The general solution of the DE xdy = ydx is a family of (a) Circles (b) Ellipse (c) Parallel lines (d) Lines passing through the origin	[2]	CO1	Understa nd
	vi) The orthogonal trajectories of the family of rectangular hyperbola $xy = c$ is (a) $x^2 - y^2 = A$ (b) $x^2 + y^2 = A^2$ (c) $y = mx$ (d) $x = y^2 A$	[2]	CO2	Rememb er
	vii)) Water at temperature 100°C cools in 10 minutes to 88°C in a room of temp 25°C, then the temperature of water after 20 minutes is	[2]	CO2	Understa nd

		(1) 0-10 (1)		,	T
	(a) 78° C	(b) 85° C			
	(c) 76°C	(d) 70°C			;
	viii) The current in the c	ircuit is calculated from the formula Ri +	[2]		Understa
	1 /	,	r1		nd
	$L \frac{d}{dt} = E \sin \omega t \text{ then}$	n integration factor of D.E is			
	(a) $\frac{R}{L}$	(b) e ^{Rt}			
	, –				
	(c) $e^{\frac{\mathbf{t}}{RL}}$	(4) E sin Ot			
	(c) e	(d) E sin L			
			[0]	CO2	Understa
	ix) Orthogonal trajector	ies for the family of curves $y^2 = 2 cx + c^2$ is	[2]	C02	nd
	(a) $y^2 = 2 ax$ (c) $x^2 + y^2 = a^2$	(b) $xy = c$ (d) $y^2 = 2ay + a^2$			
	x) If 10% of radium disa	uppears in 2 days how long will it take for	[2]	CO3	Understa
	50% to be disappear		• •		nd
		(b) 15 days			
	(c) 12 days	(d) 13 days			
	xi) The equation of the t	cangent at origin to the curve $x^2(2a - y) =$	[2]	CO3	Understa
	$\begin{vmatrix} x_i \\ y^3 \end{vmatrix}$ is	angent at origin to the curve x (2a y) =			nd
	1 7	(b) y = a			
		(d) y = 2a			
	(c) y = 0	(4) 9 24		<u> </u>	
	xii) The points o interse	ction of the curve $a^2y^2 = x^2(a^2 - x^2)$ is	[2]	CO3	Understa
	(a) (0, 0), (a, 0)	(b) (0, 0)			nd
	(c) (0, 0), (a, 0), (-	- a, 0) (d) (0, 0), (- a, a)			
			[2]	CO3	
•	xiii) The asymptote to the	iii) The asymptote to the curve $x^2 (2a - y) = y^3$ is			Understa nd
	(a) $x = 0$	(b) $y = 0$			
	(c) y = a	(d) y = 2a			
	xiv) The equation of tan	gent to the curve $r = a (1 + \cos \theta)$ at the	[2]	CO3	Rememb
	origin is				er
	(a) $\theta = 0$	(b) $\theta = \pi$			
	(c) $\theta = \frac{\pi}{2}$	(d) $\theta = \frac{3\pi}{2}$			
	xv)) The curve $r = a \cos 2\theta$, $a > 0$ has how many loops			CO3	Rememb
	(a) 2	(b) 6			er
	(c) 1	(d) 4			
Q.2	Attempt any two of th				
	a) Find equation of sph	ere whose centre is $(2, -3, 1)$ and radius 5.	[5]	CO4	Apply
		at circular cone which passes through the poir	[5]	CO4	Apply
		gin and axis parallel to the			
	·	- <u>-</u>			
	line	$\frac{x-2}{5} = \frac{y-1}{1} = \frac{z+2}{1}$:	
	c)Find equation of right	circular cylinder of radius 3 whose axis is the	[5]	CO4	Apply
				· · · · · · · · · · · · · · · · · · ·	

	· · · · · · · · · · · · · · · · · · ·			
	line $\frac{x-1}{2} = \frac{y-3}{2} = \frac{z-5}{-1}$.			
i	•			
Q.3	Attempt any two of the following			
<u> </u>	a) Evalute $\int_0^1 \int_0^{1-x} (x+y) dy dx$	[5]	CO5	Understa nd
	b) Show that $\int_0^a \int_0^{\sqrt{a^2-x^2}} e^{-x^2-y^2} dx dy = \frac{\pi}{4} (1 - e^{-a^2})$	[5]	CO5	Understa nd
	c) Evalute $\int_0^1 \int_0^1 (x^2 + y^2) dy dx + 4$	[5]	CO5	Understa nd
Q.4	Attempt any two of the following			
	(a) Find area of the region bounded by $x^2 = y$ and $y^2 = y$.	[5]	CO6	Understa nd
	b) Find volume of a sphere $x^2 + y^2 + z^2 = 4$.	[5]	CO6	Understa nd
	c) Find centre of gravity of the area enclosed by the curves $y^2 = 4ax$ and $y = 2x$.	[5]	C06	Understa nd