G.R. No.

Paper Coule - VII3-204A (BE) NCB

DECEMBER 2023 / BACKLOG

F. Y. B. TECH. (COMMON)

COURSE NAME: Engineering Physics (NCB)

COURSE CODE: ES10184A-NCB

(PATTERN 2018)

Time: [2hrs]

[Max. Marks: 60]

Instructions to candidates:

- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data wherever required
- 4) Mass of electron $m_e = 9.1 \times 10^{-31} kg$, $e = 1.6 \times 10^{-19} C$, $h = 6.63 \times 10^{-34} Js$, $k = 8.6 \times 10^{-5} eV/K$, $c = 3 \times 10^{8} m/s$

Q.No.	Questions	Max.	CO	$\mathbf{B}\mathbb{T}$
		Marks	mapped	Level
Q1.	Choose the correct option	[30]		
	A) For a viscously damped free oscillation, the amplitude varies as a) $e^{-\zeta \omega_D t}$ b) $e^{-\zeta \omega_n t}$ c) $e^{-\zeta \omega_n}$ d) $e^{-\zeta t}$	[2]	1	U
·	B) In an undamped free oscillation, the angular frequency is a) $\omega_D = \omega_n \sqrt{1 - \zeta^2}$ b) $\omega_n = \sqrt{\frac{k}{m}}$ c) $\omega_D < \omega_n$ d) $\omega_D > \omega_n$	[2]	1	R
	C) Calculate the logarithmic decrement for a damped oscillator with a damping ratio of 0.13 a) 0.81 b) 8.1 c) 1.8 d) 0.081	[2]	1	A
	D) For a damped spring mass system with mass m=1.5 Kg, k=49N/m, u(0)=-0.215, $u(0)=15cm/s$, ω_n is a) 2.57 rad/s b) 7.52 rad/c c) 5.72 rad/s d) none of these	[2]		A
	E) If the displacement of a simple harmonic motion is represented by the equation $u(t) = (1.65 \text{ cm}) \sin(7t-0.01)$, what is the amplitude?	[2]	1	Ū

			,	
- a	a) 7cm b) 0.01 cm c) none of these d)1.65 cm	T		
	F) For ultrasound, is higher than that for	[2]	2	R
	audible sound	[-]	_	
l l	a) wavelength b) frequency c) amplitude d) time period			
	G) Reverberation time in an auditorium can be decreased	[2]	2	A
i i	by			
	increasing volume of the auditorium			
	o) decreasing surface area of the auditorium			ļ
1	e) increasing hard material with small absorption of			1
	sound in the auditorium			
	d) increasing soft material with large absorption of sound	•		
	in the auditorium			
	H) If the background sound level in a room is 50dB and a	[2]	2	A
] :	speaker produces an intensity level of 80dB, then the total			
	intensity level is	j		
	a) 80.004 dB b) 130 dB c) 50.8 dB d) 85 dB			
	I) If the volume of a hall is increased, the reverberation	[2]	2	U
. .	time			
	a) decreases b) increases c) first decreases then increases			
•	d) remains unchanged			
	Given the bulk modulus $B = 0.0000161 \times 10^{-3}$	[2]	2	A.
	$10^{10} N/m^2$ and density of air = 1.39 kg/m ³ , the			}
	velocity of sound in air is calculated as			}
1	a) 250m/s b) 300 m/s c) 330 m/s d) 375 m/s			
	K) If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} represent the sides of a parallelepiped unit	[2]	3	R
	cell, its volume is given by			
	a) $\vec{b} \cdot \vec{a} \times \vec{c}$ b) $\vec{c} \cdot \vec{b} \times \vec{a}$ c) $\vec{a} \cdot \vec{b} \times \vec{c}$ d) $\vec{b} \times \vec{a} \times \vec{c}$			
	L) An electron accelerated by a voltage 1kV has a	[2]	3	A
	velocity			
	a) $1.875 \times 10^7 m/s$ b) $2.875 \times 10^7 m/s$ c) $8.175 \times 10^7 m/s$			
	$10^7 m/s$ d) $0.875 \times 10^7 m/s$			
	M) The peak intensities in an X-ray powder diffraction	[2]	3	U
	pattern is determined by			
	a) elements present in the crystal			1
	b) size and shape of the unit cell	1		ļ
	c) deviation of a crystal from a perfect crystal			<u> </u>
•	d) nano nature of the sample	1		
	N) The resolving power of a microscope having an	[2]	- 3	A
	objective of 100x and NA-0.9 is		-	
	a) 3.1 µm b) 0.31 µm c) 1.03 µm d) 1.31µm			
		[2]	3	U
	O) Two objects are said to be just resolved if	[2]	3	١٠
	a) The principal maximum in the diffraction pattern of			
. 1	one falls over the first minimum of the second image and			
i	vice versa			
	Answer any two	[10]		-
				-
	a) Discuss any two types of intrinsic noise associated	[5]	4	U
1	with a resistor.			

. . .

		hea l		1-
	b) If $Z = 1 - \frac{1}{A}$, then calculate $Z \pm \Delta Z$. Given $A \pm \Delta A = 50 \pm 2$.	[5]	4	A
	c) Find the values of the slope and intercept of a straight line for the following data using the method of least squares.	[5]	4	·
	x 0 2 4 6 8			
	y 1640 1298 946 588 261			
Q.3	Answer any two	[10]		
1	a). With the help of a neat diagram, describe the working of a pressure sensor based on differential capacitor	[5]	5	J
	method.			
	b) Discuss in brief any three characteristics of a sensor.	[5]	5	L
	c) If the resistance of a Pt resistor is $R_0 = 100\Omega$ at 0°C, what is its resistance at 200°C? Given $A = 3.9083 \times 10^{-3}$ /°C and $B = -5.775 \times 10^{-7}$ /°C ² .	[5]	5	A
	a) 176 Ω b) 671 Ω c) 167 Ω d) 716 Ω		•	
Q.4	Answer any two	[10]		
	a) Explain with a neatly labeled diagram the action of an optical cavity.	[5]	6	Ţ
	b) Explain with the help of a neatly labeled diagram the principle, construction and working of Nd:YAG laser.	[5]	6.	J
	c) If the diameter of a laser beam at the focal point of a lens is $2\lambda^2$, then calculate the intensity of a 1kW CO ₂	[5]	6	F

-