PRN No.

PAPER CODE U213-293 (RE

December 2023 (REEXAM)

SY / PY / B. TECH (SEMESTER - I)

COURSE NAME: DATA STRUCTURES Branch: E&TC COURSE CODE:

ETUA21203

(PATTERN 2020)

Time: [2 Hrs.]

[Max. Marks: 60]

- (*) Instructions to candidates:
- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data wherever required
- 4) Alquestions are compulsory. Solve any two sub questions each from each Question 1,2, 3,4,5, and 6 respectively

O NI - I	Question Description	Max.	CO	BT Level
Q. No.	Question Description	Marks	mapped	
Q.1	a) Describe the role of constructors in Java classes. Explain the difference between parameterized and	[5]	1	Understand
	default constructors. b) What is the difference between method overloading and method overriding in Java? Provide examples for	[5]		Understand
	each. c) Create a Java class representing a car. Include member variables and methods that demonstrate encapsulation and abstraction.	[5]		Apply
Q2	a) Compare and contrast the Quick Sort algorithm with the Merge Sort algorithm in terms of time complexity, stability, and memory usage in Java.	[5]	.2	Analysis
	b) Describe the conditions under which the bubble sort algorithm in Java terminates, and explain why it is called "bubble sort."	[5]		Understanding
	c) Write a Java method named selection Sort that takes an array of integers and sorts it in ascending order using the selection sort algorithm.	[5]		Apply
Q3.	a) Write a Java method to append a node to the end of a singly linked list.	[5]	3	Apply
	b) Describe how a doubly linked list allows for both forward and backward traversal.			Understand
	c) Write a Java method to delete a node to the end o a singly linked list			Apply
Q.4	- to find equivalen	t [5]	4	Evaluate
	b) Implement a simple stack using a linked list an perform push and pop operations	d [5]		Apply

				•
	c) Assess the advantages and disadvantages of	[5]		D 1
ŀ	imprometiting a circular dilette compand to	[U]		Evaluate
	queue for managing the cinema's books			,
l	oustry your evaluation by considering footened			
	omoreticy, memory usage, and ease of implement			
Q.5	a diversion tree break down it			
	Total and the expression. a*h/c + a/f*a + 1.	[5]	5	Evaluate
.	b) write an algorithm to perform an in and and			
	of a Binary Search Tree. Apply this algorithm to a tree	[5]		Apply
	given below, showing the sequence of visited nodes.	1		•
	and sequence of visited nodes.			•
`	(5) (4)			
	(a) (b) (c)			
			1	
ļ	<u> </u>			
1	c) Consider the following inorder and preorder			1 m
	traversals of a binary tree:	[5]		Apply
	Inorder: D, B, E, A, F, C			
	Preorder: A, B, D, E, C, F			
	Sketch the Binary Tree			
,	a) Given an undirected graph, implement depth-first			
	search traversal algorithms. Provide the order in	[5]	6	Apply
	which the vertices are visited for			
	which the vertices are visited for a specific graph			
		1		
•		1	•	
	b) Division			
	b) Find minimum spanning tree for the given graph	[5]		Apple
	using kruskal algorithm stepwise.	[-]		Apply
	9	ĺ		
	166			
	2 3 1/2 7			
	8			•
	3			
ľ	c) Explain the concert of	1	ĺ	. }
	c) Explain the concept of a connected graph, a path,	[5]		Understand
-	and a spaining tree, Provide an example for an in-			
1	illustrating how they are applied in graph theory.			