PRN No.	
,	

PAPER CODE | U213-214 (RE)

December 2023 (REEXAM) SY B.TECH (SEMESTER - I)

COURSE NAME: Database Management System BRANCH: Artificial Intelligence and Data Science

COURSE CODE: ADUA21204

(PATTERN 2020)

Time: [2 Hrs]

[Max. Marks: 60]

- (*) Instructions to candidates:
- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data wherever required
- 4) All questions are compulsory. Solve any two sub questions each from each Question 1,2, 3,4,5, and 6 respectively

Q. No.	Question Description	Max. Marks	CO mapped	BT Level
Q.1	a) Examine the difference between a regular entity and a weak entity in an Entity-Relationship model. Provide a practical example for each.	[5]	CO[1]	Analyzing
	b) Assess the importance of constraints in a relational database. Discuss how domain constraints contribute to data correctness.	[5]	CO[1]	Evaluating
	c) Examine the differences between total and partial participation in a relationship. How does each type impact the database structure?	[5]	CO[1]	Analyzing
Q2	a) Evaluate the characteristics and advantages of SQL as a database language. How does SQL address the need for data manipulation and control?	[5]	CO[2]	Analyzing
	b) Evaluate the significance of indexes in a relational database. How do they enhance query performance? Provide an example illustrating the use of an index.	[5]	CO[2]	Evaluating
	c) Create a SQL query that involves both DDL and DML operations. Illustrate the creation of a new table and the insertion of data into that table.	[5]	CO[2]	Creating
Q3.	a) Analyze the importance of functional dependencies in the relational model. Provide examples to illustrate trivial and non-trivial functional dependencies.		CO[3]	Analyzing

	b) Assess the benefits of normalization in a relational	[5]	CO[3]	Evaluating
	database. Provide examples to illustrate the reduction of redundancy and prevention of anomalies.	r=1		Analyzina
,	c) Analyze the role of Boyce-Codd Normal Form (BCNF) in relational databases. How does BCNF address the limitations of Third Normal Form (3NF)? Provide an example to illustrate the application of BCNF.	[5]	CO[3]	Analyzing
Q.4	a) Analyze the importance of Atomicity in transaction properties within a database. Provide examples to illustrate the significance of both commit and abort operations in ensuring the atomicity of transactions.	[5]	CO[4]	Analyzing
	b) Analyze the concept of Conflict Serializability in database transactions. Explain the conditions for conflicting operations and the construction of a precedence graph to determine conflict serializability.	[5]	CO[4]	Analyzing
	c) Design a scenario illustrating a deadlock in a database system. Explain the conditions that lead to a deadlock, and propose a solution to break the deadlock, ensuring transaction progress.	[5]	CO[4]	Creating
Q.5	a) Analyze the role of Fragmentation in a Distributed Database System. Discuss the types of fragmentation (horizontal, vertical, hybrid) and their impact on system performance and data distribution.	[5]	CO[5]	Analyzing
	b) Analyze the benefits and challenges of Replication in a Distributed Data Storage system. Discuss how replication contributes to reliability, reduction in network load, and quicker response, while addressing potential drawbacks.	[5]	CO[5]	Analyzing
	c) Analyze the fundamental principles and advantages of a distributed database system. Discuss how the distribution of databases across various computers impacts performance, reliability, and scalability.	[5]	CO[5]	Analyzing
Q.6	 a) Analyze the challenges associated with Big Data, focusing on the aspects of capturing, curation, storage, and analysis. b) Evaluate the advantages of using NoSQL databases over 		CO[6]	Analyzing
	traditional relational databases. c) Create a comparative analysis between RDBMS and MongoDB in the context of database management. Discuss scenarios where MongoDB is preferable over traditional relational databases.	. [5]	CO[6]	Analyzing

,