PRN No.

PAPER CODE | 1213-294 (RE

December 2023 (RE-EXAM)

SY B.TECH (SEMESTER - I)

COURSE NAME: Digital System Design Branch: E&TC Engg. COURSE CODE: ETUA21204

(PATTERN 2020)

Time: [2Hr]

[Max. Marks: 60]

- (*) Instructions to candidates:
- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data wherever required

4) All questions are compulsory. Solve any two sub question from Question1 to respectively

Q. No.	Question Description	Max.	СО	BT Level
		Marks	mapped	
Q.1	a) Add and Subtract the following in binary. i) 1111 and 1010 ii)100100 and 10110	[5]	CO1	Apply
	b) Convert the following to the required form. i) (101001.001) ₂ = () ₁₀ ii)(A3B) ₁₆ =() ₁₀	[5]	CO1	Apply
	c) Minimize the following expression using K-map and realize using NAND Gates, $F(A,B,C,D)=\sum m(0,1,2,9,11) +d(8,10,14,15)$.	[5]	CO1	Apply
Q.2	a) Simplify the Boolean function using K-Map $F(X,Y,Z) = \sum m(0,2,4,5,6)$ and draw the circuit diagram	[5]	CO2	Apply
	b) Design a three input majority function such that the output is 1 if the input has even number of 1's otherwise the output is 0.	[5]	CO2	Apply
	c) What is a Decoder? Construct a 4×16 decoder with two 3×8Decoders.	[5]	CO2	Apply
Q.3	a) What is meant by 'edge triggered'? Differentiate SR-FF and JK-FF with their functional operation and excitation tables.	[5]	CO3	Understand
	b) Convert a D-type flip-flop into T-flip-flop with the help of excitation table and K-map.	[5]	СОЗ	Apply
	c) Design and explain a 4-bit ring counter using D-flip flops with relevant timing diagrams	[5]	CO3	Apply
Q.4	a) i) Compare combinational and sequential circuits. ii) Explain about one bit binary cell.	[5]	CO4	Understand

	b) Design a mod-6 synchronous counter using D flip-flops.	[5]	CO4	Apply
	c) Design a Moore sequence detector to detect an overlapping sequence "101" using D flip-flops.	[5]	CO4	Apply
Q.5	a) Draw and explain the operation of 2 input TTL NOR gate	[5]	Ç05	Understand
	b) CMOS logic family is superior than bipolar families," Justify	. [5]	CO5	Understand
	c) Design CMOS circuit for $Y = \overline{(A+B).(C+D)}$	[5]	CO5	Apply
6	a) Write a VHDL code to design 1-bit full subtractor using dataflow modeling.	[5]	CO6	Apply
	b) Write a VHDL code for 4-bit up/down counter. If the up/down pin is 1 it should count in the Up mode and if 0 it should count in down mode	[5]	CO6	Apply
	c) Write a VHDL to implement a 2:1 multiplexer using structural style of model	[5]	CO6	Apply