PRN No.	
	İ

PAPER
CODE

U213-233(RE

December 2023 (REEXAM)

SY B.TECH (SEMESTER - I)

COURSE NAME:Discrete Mathematics Branch:

Computer Engineering

COURSE CODE: ES21203CS

(PATTERN 2020)

Time: [2 Hrs]

[Max. Marks: 60]

Instructions to candidates:

- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data wherever required
- 4) All questions are compulsory. Solve any two sub questions each from each Question 1,2, 3,4,5, and 6 respectively

Q. No.	Question Description	Max.	CO	BT
W		Marks	mapped	Level
Q.1	a) Calculate and check that $p \rightarrow q$ and $\neg q \rightarrow \neg p$ are logically	[5]	1	Apply
	equivalent or not?			
	b) Construct a direct proof of the theorem "If n is an odd	[5]	1	Apply
	integer, then n^2 is odd."	(C)	1	Amply
	c) Compute the premises "If you send me an e-mail message, then I will finish writing the program,"	[5]	1	Apply
	"If you do not send me an e-mail message, then I will go to			
	sleep early," and "If I go to sleep early, then I will wake up			
	feeling refreshed" lead to the conclusion "If I do not finish			
Q2	writing the program, then I will wake up feeling refreshed." a) Determine whether the function $f(x) = x^2$ from the set of	[5]	2	Apply
Q2	integers to the set of integers is one-to-one or not?			
	b) Calculate i) R^2 ii) R^3 . If R be the relation on the set $\{1, 2, 3, 1\}$			
	4, 5} containing the ordered pairs (1, 3), (2, 4), (3, 1), (3, 5), (4, 2), (5, 1), (5, 2), and (5, 4)	[5]	2	Apply
	3), (5, 1),(5, 2), and (5, 4). c) Calculate whether is R an equivalence relation or not? if R			
	is the relation on the set of strings of English letters such that			A 1-
	aRb if and only if $l(a) = l(b)$, where $l(x)$ is the length of the	[5]	2	Apply
	string x.	[5]	3	Apply
Q3.	a) Demonstrate that K_n has a Hamilton circuit whenever $n \ge n$	[ال		Apply
	3. b)Solve the traveling salesperson problem for this graph by	[5]	3	Apply
	finding the total weight of all Hamilton circuits and	1		
	determining a circuit with minimum total weight.			
	u 3 h			
	$\frac{1}{2}\sqrt{3}\sqrt{8}\sqrt{10}$			
	$\frac{1}{\sqrt{4}} \sqrt[3]{\sqrt{6}}$			
	e · · · · · · · · · · · · · · · · · · ·			
	1 > 6			
	\tilde{J}	[5]	3	Apply
	c)Compute the chromatic number of the given			
	graph.			

'	graph.		T	
	i) ii)			
Q.4	a)Compute MST using Prims algorithm	[5]	4	Apply
	9 (b) 3 2 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			
	b) Compute MST using Kruskal's algorithm	[5]	4	Apply
		,		
	c)Calculate Maximum flow of given network using ford Fulkerson algorithm	[5]	4	Apply
	3 a 3 c 2 l l source g b 3 sink			
Q.5	a) Compute how many words, with or without meaning, can be formed using all the letters of the word EQUATION, using each letter exactly once?	[5]	5	Apply
	b)Calculate how many ways are there to select a crew of 5 people to go on this mission (assuming that all crewmembers have the same job)?If A group of 35 people have been trained as astronauts to go on the first mission to Moon	[5]	5	Apply
	c) Compute i)how many possible outcomes are there in total? ii) contain exactly two heads If a coin is flipped 10 times where each flip comes up either heads or tails.	[5]	5	Apply
Q.6)	a) show that G is abelian group In a group $(G, *)$, if $(a * b)^2 = a^2$	[5]	6	Apply
	* b ² "a,b ∈ G. b) Show that set of all non zero real numbers is a group with respect to multiplication	[5]	6	Apply
	c) Show that the set 'N'is a monoid with respect to addition.	[5]	6	Apply

•