Total No. of Printed Pages: 03

PRN No.	
	i

[PAPER	U213-292 (RE))
	CODE	VZIJ ZIOGR	/

December 2023 (REEXAM)

SY B.TECH (SEMESTER - I)

COURSE NAME: Engineering Circuit Analysis Branch: E&TC COURSE CODE: ETUA21202 (PATTERN 2020)

Time: [2 Hrs]

[Max. Marks: 60]

- (*) Instructions to candidates:
- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data wherever required
- 4) All questions are compulsory. Solve any two sub questions each from each Question 1,2, 3,4,5, and 6 respectively

Q. No.	Question Description	Max.	CO	BT Level
		Marks	mapped	
Q.1	a) Draw and Explain equivalent diagram of Thevenin's and	[5]	CO1	Understand
	Norton's circuit			
	b) Find current through 1 ohm	[5]	CO1	Analysis
	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	c) Derive the expression for maximum power transfer condition applied to reactive network	[5]	CO1	Analysis
Q2	a) Draw and Explain the voltage phasor diagrams for series R-L-C circuit	[5]	CO2	Understand
	b) Justify the parallel resonance circuit as a current amplifier	[5]	CO2	Analysis
	c) Design LPF T-section with Fc=2500 Hz and Ro=1Kohm. Also compute attenuation in neper at 3000Hz and 2000Hz.	Į.	CO2	Analysis
Q3.	a) Draw and Explain initial conditions for inductor and capacitor with the help of circuit diagram	[5]	CO3	Understand
	b) Determine Vo(t) using Laplace Transform. Assume Vo(0)=5V.	[5]	CO3	Analysis

	10Ω $10 e^{-t} u(t) V $			
	c) The switch is opened at t=0. Find the expression for i(t) $\frac{10 \Omega}{3 \Omega}$ $\frac{3 \Omega}{36 V}$ $\frac{3 \Omega}{10 \Omega}$ $\frac{3 \Omega}{10 \Omega}$	[5]	CO3	Analysis
Q.4	a) Sketch the construction of N channel JFET and explain its working.	[5]	CO4	Understand
	b) Analyze Common Source with bypass capacitor amplifier circuit using N channel JFET to determine parameters as voltage gain (Av), input impedance (Zi) and output impedance (Zo).	[5]	CO4	Analysis
	c) Self-bias circuit using N channel JFET has following parameters: I_{DSS} =6mA, V_P =4V, V_{DD} =20V, R_D =3.3K Ω , R_S =1K Ω and R_G =1M Ω . Find the values of operating point parameters as I_{DQ} , V_{DSQ} and V_{GSQ}	[5]	CO4	Apply
Q.5	a) Explain following terms related to MOSFET: i) Sub-threshold conduction ii) Body effect	[5]	CO5	Understand
	b) Elaborate any three non-ideal effects in MOSFET.	[5]	CO5	Understand
	c) For Common source amplifier with voltage divider biasing circuit using N channel E-MOSFET, following parameters are given V_{DD} = 5 V, R1= 520 k Ω , R2= 320 k Ω , R $_D$ = 10 k Ω , and R $_S$ =0. Assume transistor parameters as Vtn= 0.8 V, Kn= 0.40 mA/V $_2$, and λ = 0. Determine gm, ro, small signal voltage gain (Av) and output resistances Ro	[5]	CO5	Apply

Ŷ

	fueltage series and voltage	[5]	CO6	Understand
Q.6)	a) Sketch block diagrams of voltage series and voltage	. ,		
	shunt negative feedback topologies.			
	the agaillator and and calculate	[5]	CO6	Apply
	b) Sketch RC phase shift oscillator and and calculate	. ,		
	oscillating frequency if R= $6.5 \text{ K}\Omega$ and C= $0.01 \mu\text{F}$.			
1	c) Calculate the voltage gain (Af), input impedance(Zif) and	[5]	CO6	Apply
	impodence (Zot) for Vollage-Scries recubacit	l .		
	output impedance (201) for votage amplifier having A = -100, Ri = 10 k Ω , and Ro = 20 k Ω ,			
	feedback factor $(\beta) = -0.1$.			
				<u> </u>