Total No. of Printed Pages:2

PRN No.	

PAPER	11000 000 (010)
CODE	U213-222 (RE

December 2023 (REEXAM)

SY / (SEMESTER - I)

COURSE NAME:

Mechanics of Solids I Branch: Civil

COURSE CODE: ES21202CV

(PATTERN 2020)

Time: [2 Hrs]

[Max. Marks: 60]

- (*) Instructions to candidates:
- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data wherever required
- 4) All questions are compulsory. Solve any two sub questions each from each Question 1 ,2, 3,4,5,and 6 respectively

Q. No.	Overtion Description	T = -	T	
Q. 100.	Question Description	Max. Marks	CO mapped	BT Level
			•	
Q.1	,		CO1	Understand
	subjected to tensile load. The length increases by 0.09 mm			
	and diameter decreases by 0.0045 mm due to application of			
	a tensile force. Determine its Poisson's ratio			A 1
	b) The cross-sectional area of bar ABCD shown in Fig 1 is	[5]	CO1	Apply
	600 mm2. Determine the maximum normal stress in the bar.			:
ľ.				
	25 kN 20 kN			
	$B \longrightarrow C$ 30 kN			
		i '		
	$ <1.5 \text{ m}\rightarrow <3 \text{ m}\rightarrow <3 \text{ m}\rightarrow $			
	Fig 1			Understand
	c) An 18-m-long steel wire of 5-mm diameter is to be used	[5]	CO1	
	in the manufacture of a pre-stressed concrete beam. It is			
	observed that the wire stretches 45 mm when a tensile force			
	P is applied. Knowing that E = 200 GPa, determine			
	(a) the magnitude of the force P, (b) the corresponding			
	normal stress in the wire.			
Q2	a) Draw SFD & BMD for the beam shown in Fig2	[5]	CO2	Apply
	26 kN/m 4 kN 4 kN			I-F-J
 `	A = A + A + A + A + A + A + A + A + A +			
	$A \downarrow D \downarrow C \downarrow D$			
	4.5 m 1.5 m 2 m 1.5 m 3 m 1.5 m			
	Fig 2 Fig 3		'	
	b) Draw SFD & BMD for the beam shown in Fig3	fr= 1	000	
	-, vi z a zinz ioi the beam shown in rigo	[5]	CO2	Apply

1	a) Dun and				
	c) Draw SFD & BMD for a cantilever beam carrying uniformly distributed load w (downward)		_		
`Q3.	uniformly distributed load w (downward) over the span L	a	[5]	CO2 Ap	ply
	a) A steel cantilever beam 5 m in length is subjected to concentrated load of 1 kN acting at the fermions.		Family		
1	concentrated load of 1 kN acting at the free end of the k	o a	[5]	CO3 Ap	ply
1	The beam is of rectangular cross section, 50 mm wide by	oar.			
1	mm deep. Determine maximum bending stress & sh	75	1		
	b) Enlist the arm.	ear	}		
	b) Enlist the assumptions in theory of pure bending		- ,		
	c) Draw range	{ l	5] C	O3 Remo	eml
l	c) Draw representative bending stress & shear stre	11 000	-,		
Q.4	distribution diagram for T' AND T' section	38 [5] C	O3 Reme	emb
	axes is shown in First		-		
j	stress with respect to the equivalent state	y- [5) C(O4 App	ly
}	sketch of an element aligned with the x-y-axes.	a		·	
1	60 MPa				
	TOU MPa				
.	40 MPa	.			
	30 MPa				
	30 MPa 40 MPa	1			
1					
1					
- 1	. 50 MPa				
1.	Fig 4				
b	Fig 5 For the state of plane stress shown in Fig 5, determine (a principal planes, (b) the principal $(a + b)$		1		
tr	ne principal planes, (b) the principal stresses, (c) the party shearing stress and the same $(a + b)$	[5]	00		
m	naximum shearing stress and the corresponding normal	; [0]	CO4	Apply	
St	ress. corresponding normal				
).5 a)	Solve above problem (4-b) using Mohr's Circle concept State the Rankin's Formula for column and	[5]	004		
a)	State the Rankin's Formula for column and explain each term in	[0]	CO4	Apply	
11	and explain each term in	[5]	CO5	Remembe	er
(b)	Determine the Euler's critical load of a steel tube that is 5 long fixed at both ends and has a 100				
m	long fixed at both ends and has a 100-mm outer diameter d a 16-mm wall thickness. Use E = 200 GP	[5]	CO5	Apply	
an	d a 16-mm wall thickness. Use $E = 200$ GPa.	1		PPIy	
, ,	Core distant		1		
1 7	Tade Section of 150 mm side	[5]	CO5	Remembe	r
(11)	of diameter 150				
b) a) S	state the torsion formula and avalating				
terr	n involved in this.	[5]	C06	Remember	-
b) A	A prismatic timber beam subjected to two concentrated				
loac	Is of equal magnitude as shown in Fig 3 (2-b). Using	[5]	CO6	Anal	
Mac	caulay's method determine slope at A and deflection at C			Analyze	
c) D	etermine slope and deflection at C cilever beam shown subjected to make the slope at A and deflection at C				
	ilever beam shown subjected to point load of 25KN at	[5]	CO6	1	
free	shown subjected to noise !	ا (د)	\sim 00	Analyze	- 1