Total No. of Printed Pages: 2

PRN No.		APER	11010 0
	C	CODE	0313-2

December 2023 (ENDSEM) EXAM

TY (SEMESTER - I)

COURSE NAME: CYBER SECURITY

Branch: Al&DS

COURSE CODE:

ADUA31205 (A)

(PATTERN 2020)

Time: [1Hr. 30 Min]

[Max. Marks: 40

- (*) Instructions to candidates:
- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data wherever required
- 4) All questions are compulsory. Solve any one sub question from Question 3 and any tw sub questions each from Questions 4,5 and 6 respectively.

Q. No.	Question Description	Max.	CO	BT Level
		Marks	mapped	
0.1	a) Con			
Q.1	a) Can you explain what authorization means in the	[2]	CO1	L2 Explain
	context of computer security and access control?			
Q2	a) Evaluate: Ceaser Cipher for plain text "Sun rises in the	[2]	CO3	L3
	East"			Evaluate
Q3.	a) Solve using Diffie-Hellman Algorithm p=353, q=3, a=97	[6]	CO3	L3
	and b=233.			Evaluate
	b) Calculate Cipher text using RSA algorithm: Prime			, , ,
	numbers p=13 and q= 17 and plain text to be send is 12.	[6]	CO3	L3 Evaluate
	Public key e is 19.			Evaluate
	a) Create a detailed block diagram illustrating the key	[5]	CO2	L4
	components of the MD5 algorithm. Provide a step-by-step			Analyse
	explanation of the MD5 algorithm, referring to your block			}
	diagram.			
	b) Create a detailed block diagram illustrating the key	ľ		
	components of the SHA algorithm. Provide a step-by-step	[5]	CO5	L4
	explanation of the SHA algorithm, referring to your block	-		Analyse
	diagram.			
	c) Describe the basic idea behind Cipher Block Chaining			L2
	and justify how it is employed in hash functions.	[5]	CO6	Understand
Q.5	a) Describe the concept of digital signatures, Public-Key	[5]	CO5	L3 Apply
	Infrastructure (PKI) and its significance in facilitating			
	secure communication over untrusted networks.			
	b) Compare and contrast the key management approach	[5]	CO2	L4
	in asymmetric cryptosystems with that of symmetric			Compare
	cryptosystems.			
	c) Imagine you are leading a team of researchers in the	į .		1

	field of quantum information science. Your goal is to pioneer a groundbreaking advancement in quantum key cryptography and dynamic key management. Propose a revolutionary advancement in quantum key cryptography that goes beyond current paradigms.	[5]	CO5	L6 Develop
Q.6)	a) Differentiate between intrusion detection and intrusion prevention systems. Evaluate the importance of effective password management in securing digital systems.b) Discuss how viruses and worms typically exploit	[5]	CO2	L3 Execute
	vulnerabilities in systems and the potential impact on infected devices. Justify by Providing examples of real- world incidents where each type of malware has been particularly problematic. c) Analyze the strategies and technologies commonly		CO3	L5 Justify
	employed to mitigate the impact of DDoS attacks. Discuss the role of network infrastructure, traffic analysis, and mitigation techniques in preventing or minimizing the effects of DDoS incidents.	[5]	CO4	L4 Examine