PRN No.

PAPER CODE 1313-212-ESTE

December 2023 (ENDSEM) EXAM

TY (SEMESTER - I)

Branch: Artificial Intelligence & Data Science

COURSE NAME: Design and Analysis of Algorithm

COURSE CODE:

ADUA31202

(PATTERN 2020)

Time: [1Hr. 30 Min]

[Max. Marks: 40]

- (*) Instructions to candidates:
- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data wherever required
- 4) All questions are compulsory. Solve any one sub question from Question 3 and any two sub questions each from Questions 4,5 and 6 respectively.

No.	Question Description	Max.	со	BT Level
	·	Marks	mapped	
Q.1	a) Arrange the following time complexities in ascending order.	[2]	1	Understanding
	N ² , 2 ⁿ ,nlogn,logn ,n ³ ,n,n8,(n ² -n+1)			
Q2	a) Analyze quick sort algorithm with its time complexity.	[2]	1.	Apply
	A C. L. Ale Cilleria TSD problem using Dynamic	[6]	2	Apply
Q3.	a) Solve the following TSP problem using Dynamic programming.	[0]	-	Tippiy
	20 15 20 15 20 35 35 3			
	b) Compare the following 1) Greedy method and Dynamic programming 2) Divide and Conquer and Dynamic programming	[6]	2	Analyze
Q.4	a) What is backtracking? Discuss sum of subset problem with the help of an example.	[5]	2	Apply
	b) Define Hamiltonian cycle. Check whether the Hamiltonian cycle exists for the graph given below.	[5]	2	Analyze

				-
	G1: 0 2 3 4	,		
	® _ 0			
	G2: (1)——(3)			
	(3)			
	c) solve 0/1 knapsack problem by using Backtracking			
	method and draw state space tree with all possible	[5]	2	Analyze
	solutions. Suppose that $n = 4$, $W = 16$, and we have the following: $P(40,30,50,10)$ and $W(2,5,10,5)$			
2.5	a) Differentiate between Backtracking and Branch and Bound.	[5]	2	Analyze
	b) Explain Least cost search with example.	[5]	2	Annly
	•		4	Apply
	c) Write control abstraction of LC search.	[5]	3	Apply
).6)	a) Explain vertex cover algorithm with suitable example.	[5]	3	Apply
	b) Explain in brief models of parallel computing.	[5]	4	Apply
	c) Explain the relationship between P class, NP class, NP			,
	complete, NP Hard.	[5]	4	Apply

.