Total No. of Printed Pages: 02

| PRN No. |  |
|---------|--|
|         |  |

PAPER CODE

V313-222-Es1

## December 2023 (ENDSEM) EXAM

## SY /TY/B.TECH (SEMESTER - I)

COURSE NAME: Structural Design and Drawing - I

Branch: Civil Engineering

COURSE CODE: CVUA31202

(PATTERN 2020)

Time: [1Hr. 30 Min]

[Max. Marks: 40]

- (\*) Instructions to candidates:
- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator, IS 456:2000 and interaction curves are allowed
- 3) Use suitable data wherever required
- 4) All questions are compulsory. Solve any one sub question from Question 3 and any two sub questions each from Questions 4,5 and 6 respectively.

| Q. No. | Question Description                                                                                                                                                                                                                                                                                                                                         | Max.<br>Warks | CO<br>mapped | BT<br>Level |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|-------------|
| Q.1    | a) The dimension of a rectangular section is 250 mm × 300 mm. with clear cover of 25mm and tensile reinforcement provided is with 3 nos. 16 mm HYSD bars. Calculate the percentage of steel provided.                                                                                                                                                        | [2]           | CO-1         | Apply       |
| Q2     | a) The rectangular beam of width, 300 mm is having effective depth of 365 mm. The concrete grade is M20 and the grade of reinforcing steel is Fe 415. The tensile reinforcement is provided by 3-20 mm dia. bars. Calculate the moment of resistance due to steel.                                                                                           | [2]           | CO-2         | Apply       |
| Q3.    | a) A rectangular RC beam of size 300 mm X 650 mm is reinforced with 4 nos. 25 mm diameter bars on tension side at an effective cover of 50 mm. the effective simply supported span of the beam is 6 m and the beam is subjected to factored UDL of 150 kN/m. Design the shear reinforcement. Use M25 grade concrete and Fe 415 grade steel.                  | [6]           | CO-3         | Apply       |
| ,      | b) A RC beam of rectangular c/s with a breadth of 350 mm and overall depth of 800 mm is reinforced with 4 nos. 20 mm diameter on tension side at an effective cover of 50 mm. The section is subjected to ultimate moment of 215 kN.m. Estimate the ultimate torsional moment that can be allowed on concrete Use M30 grade concrete and Fe 415 grade steel. | [6]           | CO-3         | Apply       |
| Q.4    | a) Design a simply supported one way slab over a room 3.2 m $\times$ 6.4 m effective, carrying L.L. of 6 kN/m2 and F.F. of 2 kN/m2. Use M30 and Fe 500 materials.                                                                                                                                                                                            | [5]           | CO-4         | Apply       |
| ,      | b) The tread depth of a step is 250 mm; the rise height of a step is 150 mm and the overall depth of waist slab is 150 mm with 25 mm effective cover. The thickness of floor finish is 15 mm. Take unit                                                                                                                                                      |               |              |             |

|      | weight of reinforced concrete as 25.0 kN/m3 and unit weight of floor finish as 23.5 kN/m3. Calculate the area of main steel required for the staircase.                                                                                                                                                                                      | [5] | CO-4 | App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | c) A simply supported slab having effective span of 6 m x 5 m is subjected to a super-imposed load of 10 kN/m2 inclusive of its self-limit state method of design, calculate area of torsional steel required at corner of the slab Consider parts.                                                                                          |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Q.5  | of concrete and steel are M 25 and Fe 415 respectively. Take all edges discontinuous.  a) Design the longitudinal and transverse reinforcement in the short column to carry an axial force of 500 kN and working moment of 75 kN-m about the major axis. The                                                                                 |     | CO-4 | Appl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | kN-m about the major axis. The unsupported length of the column is 3.0 m. The column is fixed at both ends. Use M 20 concrete and Fe 415 steel.                                                                                                                                                                                              | [5] | CO-5 | Appl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | b) A short RC column 230 mm X 450 mm is reinforced with 6 nos. 20 mm diameter bars with 3 bars equi-spaced along 450 mm sides. Determine the bending moment about major axis when Pu = 600 kN.                                                                                                                                               | [5] | CO-5 | Apply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | c) Design the reinforcement in a spiral column of 400 mm diameter subjected to a factored load of 1500 kN. The column has an unsupported length of 3 m and in his                                                                                                                                                                            |     |      | The second secon |
|      | Fe 415 material.                                                                                                                                                                                                                                                                                                                             | [5] | CO-5 | Apply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Q.6) | a) An isolated footing (size :1800 mm x 1800 mm) is made for a square column of size 300 mm $\times$ 300 mm to transfer the ultimate load, $P = 1500$ kN to the ground. The overall depth of footing is 500 mm. The clear cover is 45 mm. The diameter of reinforcement provided is 12 mm. Show the check for two-way shear for the footing. | [5] | CO-6 | Apply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | b) An isolated pad footing for a column 250 mm wide and 550 mm deep is subjected to axial working load of 2000 kN. The safe bearing capacity of the soil is 300 kN/m2. Calculate the dimensions of footing if M25 & Fe 415 materials are used.                                                                                               | [5] | CO-6 | Apply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | c) A square isolated footing (size:1800 mm x 1800 mm) is made for a square column of size 300 mm × 300 mm to transfer the ultimate load, P = 1500 kN to the ground. The overall depth of footing is 500 mm. The clear cover is 45 mm. The diameter of reinforcement provided is 12 mm. Show the check for one way shear for the footing.     | [5] | CO-6 | Apply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      |                                                                                                                                                                                                                                                                                                                                              |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                              |     | ·    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| `,   |                                                                                                                                                                                                                                                                                                                                              |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                              |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |