PRN No.		Total No. of Printed Pages: 03				
FRN NO.	P	PAPER				
	_ c	CODE	V313-235-D-1912			
December 2023 (ENDSEM) EXAM						

TY (SEMESTER - I)

COURSE NAME: PROFESSIONAL ELECTIVE-I

ARTIFICIAL INTELLIGENCE

Branch: COMPUTER **ENGINEERING**

COURSE

CODE:

CSUA31205D

(PATTERN 2020)

Time: [1Hr. 30 Min]

[Max. Marks: 40]

- () Instructions to candidates:
- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data wherever required
- 4) All questions are compulsory. Solve any one sub question from Question 3 and any two sub questions each from Questions 4,5 and 6 respectively.

Q. No.	Question Description	Max.	CO	BT Level
		Marks	mapped	
Q.1	a) Explain type of environment for following agents i. Internet Shopping ii. Automated taxi driver	[2]	1	Apply
Q2	a) Explain limitations of Hill climbing algorithm	[2]	2	Understand
Q3.	a) Determine the likelihood that the alarm went off but neither a burglary nor an earthquake had taken place, and that both David and Sopia had phoned Harry.	[6]	3	Apply
772	Τ 0.02 F 0.993 Burglary B ε Earthquake F 0.999			
	A E PIA(-T) PIA-F) T T 0.94 0.06 T F 0.95 0.04 T T 0.68 0.08 F F 0.399 0.999			
weeks	A P(S=T)P(S=F) T 0.91 0.05 F 0.05 0.95 Oavid Calls D S Sopia Calls F 0.02 0.95 A P(S=T)P(S=F) T 0.75 0.25 F 0.002 0.98			

	b) Prove by method of Resolution that "John is Happy"	[6]	3	Apply
	i. Anyone passing exam and winning lottery			
	is happy.			
	ii. Anyone who is lucky or studies can pass			
	exam			
	iii. John did not study but he is lucky.			
	iv. Anyone who is lucky wins the lottery			
Q.4	a) Assume we have a set of data from patients who have	[5]	4	Apply
	visited Sasoon hospital during the year 2020.A set of			
	features (e.g., temperature, height)have been also		Í	
	extracted for each patient. Some patient features are	-		
	expensive to collect(e.g., brain-scans) whereas others			
	are not (e.g., temperature). Therefore, we have decided to			
	first ask our classification algorithm to predict whether			
	a patient has a disease, and if the classifier is 80%			
	confident that the patient has a disease, then we will do			
	additional examinations to collect additional patient			
	features. In this case, which classification methods do			
	you recommend: neural-networks, decision-tree, or			
	naïve-Bayes? Justify your answer.			
	That's Day son saccing your man in			
	b) Analyze the following scenarios, Identify and justify	[5]	4	Apply
	the type of learning (supervised, unsupervised and			-
	reinforcement learning) involved in following cases:-			
	i) Playing a game where the user has the goal of getting			
	a high score and can make moves in the game.			
	ii)A taxi agent wants to develop the concept of "good			
	traffic days" and "bad traffic days".			
	iii)Based on past information about spams, filtering out	-		
	a new incoming email into Inbox (normal) or Junk folder			
	(Spam)	-		
	iv) You want to detect groups of similar subscribers of			}
٠.	your YouTube channel as you have many subscribers of			
	your channel.			
	your channer.			
-				
	c) Obtain the stepwise output of the neuron Y for the	[5]	4	Appl
	network shown in figure (only 1 Epoch) using activation	L-J		1 **
	function as binary sigmoid. Also back-propagate the			

				
	Bias			
	0.8			
	0.1 0.36	ļ		
-				•
	0.6	ļ		
	0.4			
			, i	
		(=1		A 1
Q.5	a) Calculate 5 yearly and 7 yearly moving averages for	[5]	5	Apply
	the following data for the commercial production and			
	industrial failure. Comment on Trend.			
	Year No. of Failures			
	2012 23	•		
	2012 23			
	2013 20			
	2017 28			
	2016 20			
	2017 12	•		
	2018 14			
	2019 10			
	2020 9			
	2021 13			
	2022 11			·
		[5]	.5	Apply
	b) Through a step-by-step process, calculate TF-IDF for	[-]	.5	
	the given corpus and mention the word(s) having		1	
	highest value.			
	Document 1: We are going to Pune			
	Document 2: Pune is a famous place. Document 3: We are going to a famous place.		. '	
	Document 3: We are going to a famous place. Document 4: I am famous in Pune.			
'	Document 1. I am ramous m I ams.			
	c) Explain in detail the model building process in Time	ŗლ3	5	Annly
	Series.	[5]	J	Apply
Q.6	a) Explain Azure Machine Learning Service	[5]	6	Understand
	b) Write a note on Amazon Textract	[5]	6	Understand
	c) Explain Amazon Rekognition.	[5]	6	Understand