PRN NO.	

PAPER CODE V313-2104-53

DECEMBER 2023 (ENDSEM) EXAM

TY(INFORMATION TECHNOLOGY) (SEMESTER - I) COURSE NAME: FORMAL LANGUAGE & AUTOMATA THEORY COURSE CODE: ITUA31204 (PATTERN 2020)

Time: [1Hr. 30 Min]

[Max. Marks: 40]

Instructions to candidates:

- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data wherever required
- 4) All questions are compulsory. Solve any one sub question from Question 3 and any two sub questions each from Questions 4, 5 and 6 respectively.

Q. No.	Question Description	Max.	CO	BT
	×	Marks	mapped	Level
<u>.</u> .				
Q.1	a) Explain Finite automata with its type and draw the	[2]	1	2
	transition diagram and transition table with respect to an			
	example.			
Q2	a) Explain how the properties of regular set are applied to	[2]	2	2
	finite automata.			
Q3.	a) Distinguish the types of grammar with an example. Write	[6]	3	2
	down languages and production rules with respect to an			
-	example.			
	b) Illustrate the conditions applied to solve the Chomsky	[6]	3	2
	normal forms with an example.			
Q.4	a) Give the formal definition of Pushdown Automata (PDA).	[5]	4	2
	Describe the types of PDA. List various applications of PDA.			
	b) Construct a PDA equivalent to the given Context Free	[5]	4	3
	Grammar (CFG).			
	S -> aBc ab			
1	B -> SB ε			
	c) Construct a PDA that accepts L= $\{0^{n}1^{n} \mid n \ge 0\}$. Simulate	[5]	4	3
.]	the working of this PDA.			
Q.5	a) Compare Finite State Machine (FSM) and Turing machine	[5]	5	2
	(TM). Discuss about the power of TM over FSM.			
	b) Design a Turing machine that will replace every occurrence	1	5	! 3 !
	of 11 by 10 from a sequence of 0's and 1's. Show the	į		
	stimulation for a string 011001110 using instantaneous			İ
	description.			
	c) Illustrate various elements of a Turing machine. Explain	[5]	5	2
	the variations of Turing machine with a diagram.		<u> </u>	

Q.6)	 a) Describe the Post correspondence problems with examples. b) Discuss the Properties of Recursively enumerable languages. 	[5] [5]	б б	2 2
	c) Discuss the Kruskal's algorithm with minimum spanning tree and find out the total cost of MST.	[5]	6	3
	5 7 10 2			

Note: BT Level- 1-Remember, 2- Understand, 3-Apply, 4-Analyse, 5-Evaluate, 6-Create