PRN No.

PAPER CODE

U313-2111ESE

December 2023 (ENDSEM) EXAM

TY (SEMESTER - I)

COURSE NAME: NUMERICAL METHODS Branch: MECHANICAL COURSE CODE: (PATTERN 2020)

MEUA31201

Time: [1Hr. 30 Min]

[Max. Marks: 40]

- (*) Instructions to candidates:
- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data wherever required
- 4) All questions are compulsory. Solve any one sub question from Question 3 and any two sub questions each from Questions 4,5 and 6 respectively.

Q. No.	Question Description	Max.	СО	BT Level
		Marks	mapped	
	\D			
Q:1	a) Round 5387,9874 to 1 significant figure.	[2]	1	2
Q.2	a) The goal of forward elimination steps in the Gauss	[2]	2	1
	elimination method is to reduce the coefficient matrix to			
	a (an) matrix.		:	
	a) Diagonal			
	b) Identity			
	c) Lower triangular			
	d) Upper triangular		·	
Q.3	a) Using Newton 's forward difference interpolation, find	[6]	3	3
	the value of $f(2.2)$, if			
	x 2 2.4 2.8 3.2			1
	y 8.5 9.75 10 11.5			•
	b) Using Lagrange's interpolation, find the value of $f(2.2)$,	[6]	3	3
	if .			
	x 2 2.4 2.8 3.2	ļ		
	y 8.5 9.75 10 11.5			
Q.4	a) Evaluate the given integral by Trapezoidal Rule.	[5]	4	3
	(Assume $n = 12$):		1.	
	4			
	$\int_{1}^{4} (\cos(x) - e^{x}) dx$			
	b) Evaluate the given integral by Simpson's 1/3rd Rule.	[5]	4	3
	(Assume $n = 12$):			
	4]		
	$\int_{1}^{\infty} (\cos(x) - e^{x}) dx$			
ļ	J			
	c) Evaluate the given integral by Simpson's 3/8th Rule.	[5]	4	3
	(Assume $n = 12$):			

	$\int_{1}^{4} (\cos(x) - e^{x}) dx$			
Q.5	a) Solve $\frac{dy}{dx} = \tan n(x) + (y)$, $y(0) = 1$ by Euler's method.	[5]	5	3
	Hence find the values of y at $x = 1$. (take $h = 0.2$)			·
	b) Solve $\frac{dy}{dx} = \sin(x) + \cos(y)$, $y(0) = 1$ by Runge-Kutta	[5]	5	3
	2 nd order method.			•
	Hence find the values of y at $x = 0.99$. (take $h = 0.33$)			
	c) Solve $\frac{dy}{dx} = x + y$, $y(0) = 1$ by Runge-Kutta 4th order	[5]	5	3
	method.			•
	Hence find the values of y at $x = 0.1$. (take $h = 0.5$)			
Q.6	a) Classify the equation:	[5]	6	. 3
	$2\frac{\partial^2 u}{\partial x^2} + 4\frac{\partial^2 u}{\partial x \partial y} + 2\frac{\partial^2 u}{\partial y^2} - 10\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$]		
	b) Given the values of $u(x,y)$ on the boundary of the	[5]	6	. 3
	square in the Figure 1, evaluate the function $u(x,y)$		1	
	satisfying the Laplace equation at the pivotal points of			
	this figure by Gauss-Seidel method. (Show detail			
	calculations for interaction no. 0, 1 and 2)			
	100 100 100 80	: :		
	100 100 100 80			
ľ	120 41 42 80			
	120			,
	<u>u3</u> <u>u4</u> 10]		
	120			
	100 80 10 0			
1				•
	Figure 1	161	6	3
	c) Solve the equation $\frac{\partial u}{\partial x} = \frac{\partial^2 u}{\partial x^2}$	[5]		
	subject to the conditions			
	$0 < x < 5; t \ge 0$ given that $u(x, 0) = 20, u(0, t) = 0, u(5, t) = 0$	=		
.]	100. Compute u for the time-step with $h = 1$ by the Crank	-		
<u> </u>	Nicholson method.			

.