Total No. of Printed Pages: 3

	1				10001	10. 0	r r rimited Las
PRN No.					PAPER		
					CODE		V313-23

December 2023 (REEXAM)

TY (SEMESTER - I)

COURSE NAME:

PROFESSIONAL ELECTIVE-I Branch: COMPUTER ARTIFICIAL INTELLIGENCE

COURSE

CSUA31205D

ENGINEERING CODE:

(PATTERN 2020)

Time: [2 Hrs]

[Max. Marks: 60]

Instructions to candidates:

- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data wherever required
- 4) All questions are compulsory. Solve any two sub questions each from each Question 1,2, 3,4,5,and 6 respectively

Q. No.	Question Description	Max.	СО	BT Level
		Marks	mapped	bi Level
Q.1	a) Classify the environment for AI system for Banking Chatbot according to the five principal distinctions: Accessibility, Determinism, Discreteness, Episodicness, and Stationess	[5]	1	Apply
	b) Apply PEAS (i.e. Performance, Environment, Actuators, and Sensors) descriptions for automatic taxi driver.	[5]	1	Apply
	c) "AI aims to build rational agent" Justify this claim along-with neat diagram and suitable example.	[5]	1	Apply
Q2	a) Solve the following 8 puzzle problem using A*	[5]	2	Apply
	2 8 8 4 2 3 1 3 4 8 4 7 3 7 6 5			
	Initial State Final State			
	b) Show for the following Min-Max game path with α-ß pruning traversed to reach to goal state. Show the computations at each step and clearly mention the conditions needed for the traversing	[5]	2	Apply
	nooded for the travership			

	Max			
	Min			
				·
	\mathcal{A}			
	$\begin{pmatrix} 2 & 3 & 5 & 9 & 0 & 1 \end{pmatrix}$			
	c) Solve Constraint satisfaction problem for coloring following graph using MRV algorithm	[5]	2	Apply
	Ca A o			
			\$	
Q3.	a) Consider the following axioms:			
		[5]	3	Apply
	Every Indian follows tradition.			
	Everyone who follows tradition believes God.			
	Ram is God, and Sham worships Ram.			
	Anybody who worships Ram is happy or is lucky.			
	No worshiping means no superstitions.			
	Represent these axioms in predicate calculus			
	b) Explain forward and backward chaining to prove that "Sham is Happy" for above statements.	[5]	3	Apply
	c) Predict the impact of turning the sprinkler on	[5]	3	Apply

.

	SDDINZIED			
	SPRINKLER RAIN RAIN T F			
	F 0.4 0.6 SPRINKLER RAIN 0.2 0.8			
	7 0.01 0.99			
	GRASS WET			
-	GRASS WET			
	SPRINKLER RAIN T F			
	F F 0.0 1.0 F T 0.8 0.2			
	T F 0.9 0.1			
	T T 0.99 0.01			
0.4	o) David			
Q.4	a) Build a perceptron classifier for NAND Gate	[5]	4 .	Apply
	b) Suppose you have built decision tree model and that			
	Transfer decision tree model and that	[5]	4	Apply
	result in overfitting. Identify and justify the technique to overcome overfitting problem.			
	overments problem.			
	c) Compare Linear and Logistic regression w.r.to suitable	re i	4	
:	example .With appropriate explanation explain loss	[5]	4	Apply
	function of Logistic Regression			
Q.5	a) Apply text normalization for following paragraph:	[5]	5	Apply
}	"It would be unfair to demand that people cease pirating	[0]		Apply
	files when those same people aren't paid for their			
	participation in very lucrative network schemes. Ordinary			
	people are relentlessly spied on, and not compensated for			,
	information taken from them. While I'd like to see			
	everyone eventually pay for music and the like, I'd not ask			
	for it until there's reciprocity."			
	b) Colored m 1 c cc			
	b) Calculate Trend for following data using Moving	[5]	5	Apply
,	Average.			
	Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 Var 205 316 340 446 396 450 515 575			
	Var 205 316 340 446 396 450 515 575			
	150	[5]	5	Apply
	c) Differentiate between Trend, Seasonality Cyclic			
	c) Differentiate between Trend, Seasonality, Cyclic variation and Residual with appropriate example.			
Q.6)	a) Write a note on Amazon Textract	[[]]	6	TT 1
	10111100	[5]	6	Understand
	b) Explain Google cloud AI building blocks	[5]	6	Timeloweter
		[ت]		Understand
	c) Explain Amazon Rekognition.	[5]	6	Understand
		[7]		onderstand