Total No. of Printed Pages: 02

PRN No.		PAPER		
PRIVING.		CODE	U313-231 (RE)	
	'			

December 2023 (REEXAM)

TY B.TECH (SEMESTER - I)

Branch:Computer COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHM

COURSE CODE:

CSUA31208

Engineering

(PATTERN 2020)

Time: [2 Hrs]

[Max. Marks: 60]

Instructions to candidates:

- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data wherever required
- 4) All questions are compulsory. Solve any two sub questions each from each Question 1,2, 3,4,5,and 6 respectively

). No.	Question Description	Max. Marks	CO mapped	BT Level
Q.1	a) When analyzing large genomic datasets, identifying patterns and relationships within the DNA sequences is a challenging task. Identify a suitable divide and conquer strategy for efficiently analyzing genomic sequences. And perform the analysis of the poposed technique.	[5]	1	Apply
	b) Search engines need to index and sort a large number of web pages based on relevance to search queries. Identify a sorting algorithm that manage the index data efficiently, facilitating faster search results retrieval and perform it's analysis.	[5]	1	Apply
	c) Solve the given the recurrence relation of an algorithm $T(n) = 2 T(n/2) + n^2 \log n$, to calculate it's time complexity as per master's theorem?	[5]	1	Apply
Q2	a) Solve the given problem (Knapsack) using greedy method. Find out the profit earned and the fraction of objects chosen. No. of objects = 3, M = 20 P1, P2, P3 = (50,60,48) and W1, W2, W3 = (15, 13,10)	[5]	2	Apply
	b) Solve the given problem (Job Scheduling with deadlines) using greedy method. Find out the profit earned and the sequence of jobs chosen. Let n = 6, (P1,P2,P3,P4,P5,P6) = (50,45,40,30,25,10) (d1,d2,d3,d4,d5,d6) = (4,1,3,1,2,2)	[5]	2	Apply

	c) Solve the following instance of knapsack using Dynamic Programming.(Tabulation Method)	[5]	2	Apply
1.1	n = 3, $(w1, w2, w3) = (2, 3, 4)$ and			
	m = 6, $(p1, p2, p3) = (1, 2, 5)$			
Q3.	a) "LC search strategy proven to be better than LIFO			
	for 0/1 knapsack". Make use of the following	[5]	3	Apply
	problem to justify your answer. Generate state			
	space tree for LIFO and LC.			
	w=(5,4,3), p=(6,5,4) and M=7			
	b) Solve the following TSP problem using Branch			
	and Bound	1		
	1 2 3 4	[5]	3	Apply
	1 0 10 15 20			
	2 5 0 9 10			
	3 6 13 0 12			· ·
	4 8 8 9 0			
	c)If you are given 4 Queen's problem specification then			
	make use of backtracking algorithmic strategy for			
	placement of queen's		į	.
	i. without constraints			
	ii. with explicit constraints		2	
	iii. with implicit constraints	[5]	3	Apply
	iv. problem states			
	v. solution states			
	vi. answer states			
Q.4	a) Demonstrate 3-CNF Satisfiability is NP-complete.			
	Consider the formula ($y1 \leftrightarrow (y2 \land \neg x2)$) for the	[5]	4	Understan
	explanation.			
	b)Demonstrate Social networking resembles "Vertex	[5]		
	cover" problem. Justify your answer and prove it is NP	[3]	4	Understan
	Hard Problem.			
	c) Comapre tractable and intractable problems and	[5]	4	Understan
	demonstrate appropriate algorithmic strategy to be	(- į	,	Onderstan
	implemented for both types of problems.			
	a) Demonstrate randomized quicksort algorithm and	[5]	5	Understand
	give its time complexity.	ι - J		onder stall
	b) Demonstrate genetic algorithm with suitable example.	[5]	5	Understand
	c)Demonstrate mutation and crossover function of	(~)		Onderstand
	genetic algorithm, with suitable example.	[5]	5	Understand
(6.0	a) Demonstrate the PRAM architecture in detail.	[5]	6	Understand
		[5]	6	Onderstand
	o)Demonstrate BRENT's Theorem with suitable example.	ا ا		IIndon
	J Demonstrate parallel evaluation of an expression tree	[5]	6	Understand
١,	consider the following arithmetic expression for the	ادا	5	Understand
(construction of tree($(7 - (21/3))*3$) + $((9*(10-8))*5$)	1		