PRN No.

PAPER CODE

[Max. Marks: 60]

December 2023 (REEXAM)

TY (SEMESTER - I)

COURSE NAME: MACHINE

Branch: ELECRONICS AND TELECOMMUNICATION

COURSE CODE:

ETUA 31203

LEARNING

(PATTERN 2020)

- Time: [2 Hrs]
- (*) Instructions to candidates:
- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data wherever required
- 4) All questions are compulsory. Solve any two sub questions each from each Question 1,2, 3,4,5, and 6 respectively 194.

Q. No.		Question Description	Max. Marks	CO mapped	BT Level
Q.1	a)	Calculate the z-score for array [20,15,10,5,0].	[5]	CO1	Apply
	b)	Suppose the p.m.f.(probability mass function) of the discrete random variable <i>X</i> is:	[5]	CO1	Apply
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		Calculate expectations \mathbb{E} (2), \mathbb{E} (x) and \mathbb{E} (2x).			
	c)	Overfitting of model reduces accuracy and its said to be a big problem in Machine learning. Explain different techniques to reduce /avoid overfitting.	[5]	CO1	Under- Stand
Q2	a)	In a regression model ,the cost function $J(\theta) = \theta x^3$, the old	[5]	CO2	Apply
		$\theta=0.5$, learning rate $\alpha=0.05$ and input x=2,calculate the updated θ using gradient descent. Explain all steps of gradient descent algorithm.			
	b)	In a univariate linear regression model with θ_0 =1, θ_1 =2 and x=1.Calculate the output of model when passed through tanh activation.	[5]	CO2	Apply
	c)	The sigmoid activation function is given by $f(z)=\frac{1}{1+e^{-z}}$, prove that $\frac{\delta f(z)}{\delta z}=f(z)(1-f(z))$	[5]	CO2	Under Stand

				Kartson Killia Alton	<u> </u>
Q3.	a)	In Naïve Bayes Classification, predicting the possibility of playing Golf, the frequency table for the weather outlook is as shown below	[5]	CO3	Apply
		Play Golf			
		Frequency Table Yes No			
		Sunny 3 2		0.00	
	į	Outlook Overcast 4 0			
		Rainy 2 3		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		Compute the posterior probability P (No Sunny) and P(Yes Rainy).		1	
	b)	Given the following confusion matrix for a classification task	[5]	CO3	Apply
		with three classes (A, B and C), Actual A B C			
		/Predicted			
		A 6 2 0 B 1 6 0			Orma de Ay
		C 1 1 8			
		Calculate Overall accuracy, Precision, Recall and F1 for all			
		classes.			
	c)	In context with Support Vector Machines (SVM), explain	[5]	CO3	Under
		a)Hyperplane b) Margin and c) Support Vectors. Why SVM are called as "Kernal Machines".			Stand
		Carron as Trotted Historians		ng raint sh	
Q.4	a)	In a certain PCA based application, the data is arranged in 2x2	[5]	CO4	Apply
		matrix and is as follows			
		$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$			
		Calculate the co-variance matrix and Eigen Values.			1.74 1;
	b)	With the help of suitable example, illustrate the process of	[5]	CO4	Under
		agglomerative hierarchical clustering. Draw the dendrogram			Stand
		for the example used in illustration.	ļ		
	c)	You are working on some classification problem where the	[5]	CO4	Apply
		input data is non-linear and as shown in figure below			
		1.0			
		0.5			
		0.00 A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	,	- (2.4%) - (2.4%) 4(3.5)	
		-0.5			
		Suggest and demonstrate a technique through which you can			
		convert this nonlinear data into linear one for smooth partition			
		for robust classification.]		1

Q.5	a)	Let $v = [2.1, 4.8, 3.5]$, be the inputs to the softmax function, calculate the output for all inputs.	[5]	C05	Apply
	b)	You are training a multilayer perceptron for certain classification application. What will be the effect on training if use 1) Stochastic gradient 2) Batch gradient and 3) Mini batch gradient.	[5]	~~~	Under Stand
	c)	In the perceptron shown below, output O_1 =0.8896, the output of hidden layer h_1 =0.9866, target t_1 =0.1. The activation function used in output layer is sigmoid. The present value of weight connecting h_1 to O_1 (weight W_7) is 0.7. Calculate the updated value of W_7 if learning rate is 0.01.	[5]	CO5	Apply
		$W_1=0.3$ $W_2=0.3$ $W_3=0.5$ $W_4=0.1$ $W_3=0.1$ $W_4=0.1$ $W_4=0.1$ $W_4=0.1$ $W_2=0.1$ $W_3=0.1$ $W_4=0.1$ $W_2=0.1$ $W_2=0.1$			
		b ₁ =0.5 b ₂ =0.5			
Q.6)) a)	Thirty two filters of size 11x11 is applied to an image of size 327x327 with zero padding and stride of 2, The image is RGB. Calculate the volume of final image?	[5]	CO6	Apply
	b)	What is convolution? Explain 2D convolution process with suitable example? How 2D convolution is used in 3D filtering in Convolutional Neural networks?	[5]	C06	Under- Stand
	c)	"Deep learning networks are more susceptible to overfitting". Justify. What are the techniques used to avoid overfitting in deep networks?	[5]	CO6	Under Stand
l					أحجب الذ