Total No. of Printed Pages: [2]

PRN No.	

PAPER CODE V313-295 B (RE

December 2023 (REEXAM)

TY B.TECH (SEMESTER - I)

COURSE NAME: System Design using Verilog Branch: E&TC

COURSE CODE: ETUA31205B

(PATTERN 2020)

Time: [2 Hrs]

[Max. Marks: 60]

- (*) Instructions to candidates:
- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data wherever required
- 4) All questions are compulsory. Solve any two sub questions each from each Question 1, 2, 3, 4, 5, and 6 respectively.

Q. No.	Question Description	Max. Marks	CO mapped	BT Level
Q.1	a) Show VLSI Design flow and explain each step in the flow.	[5]	CO1	Understand
•	b) Illustrate dataflow and behavioral style of modelling with the Verilog code example of each.	[5]	CO1	Understand
	c) What will be the value of outputs f1 and f2 if the input $x = "10101010"$ and input $y = "11110000"$ in the following code	[5]	CO1	Apply
	module example (input x, y, output f1, f2); wire [7:0] x, y; wire [4:0] f1; wire f2; assign f1 = x[4:0] & y[4:0]; assign f2 = x[2] ~y[3]; endmodule			
Q.2	a) Realize 1-bit full adder using k-map and design it using Verilog.	[5]	CO2	Apply
	b) Realize 1-bit full subtractor using k-map and design it using Verilog.	[5]	CO2	Apply
	c) Write a Verilog module to generate the clock with a period of 10 ns. Use initial and always block.	[5]	CO2	Apply
Q.3	a) Write a Verilog module to implement 3-input NAND gate using user defined primitives.	[5]	CO3	Apply
4	b) Write a Verilog module to implement negative edge triggered T-type flip-flop using user defined primitives.	[5]	CO3	Apply

(v		. •	* *	
	c) Draw the circuit diagram of CMOS 2:1 multiplexer.	[5]	CO3	Apply
	Write a Verilog module to implement it using switch-level modelling.	· [0]		Apply
Q.4	a) Draw the architecture of XC9572 CPLD and explain each block.	[5]	CO4	Remember
	b) State important features and specifications of XC9500 CPLD family.	[5].	CO4	Remember
	c) State features of XC4000E FPGA family.	[5]	CO4	Remember
Q.5	a) Construct an algorithm for multiplication by repeated addition. Draw data path diagram with appropriate inputs/outputs and internal signals. Also draw ASM charts and state diagram. (Verilog code is not required)	[5]	CO5	Apply
	b) Design a sequence detector using Verilog to detect a nonoverlapping sequence "1011" using Moore FSM. Draw state diagram. (Testbench is not required)	[5]	CO5	Apply
	c) Write a Verilog design code to design 16 x 16 register bank with reset. (Testbench is not required)	[5]	CO5	Apply
Q.6	a) List the micro-operations for the pipelined stage Instruction Fetch (IF). Also draw the stage diagram.	[5]	CO6	Understand
	b) Construct the pipelined architecture to do the following computations. Write a Verilog code to implement this architecture. x1 = A * B; x2 = C + D; x3 = x1 - x2; F = x3 * C;	[5]	CO6	Apply
	c) List the step-wise micro-instructions required to execute following instructions. i) ADD R3, R6, R8 ii) SW R2, 30 (R10)	[5]	CO6	Understand