Total No. of Printed Pages: 2

PRN No.

PAPER CODE | U313-2115 B(R)

December 2023 (REEXAM)

T.Y.B.TECH (SEMESTER - I)

COURSE NAME: COMPOSITE MATERIALS Branch: Mechanical

COURSE CODE:

MEUA31205B

(PATTERN 2020)

Time: [2 Hrs]

[Max. Marks: 60]

(*) Instructions to candidates:

- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data wherever required
- 4) All questions are compulsory. Solve any two sub questions each from each Question 1,2, 3,4,5, and 6 respectively

Q. No.	Question Description	Max. Marks	CO mapped	BT Level
Q.1	a) Classify the Composite Materials with suitable examples	[5]	1	Understand
	b) Illustrate the role of matrix and fibers in fiber reinforced composite materials	[5]	1	Understand
	c) Discuss the applications of composite materials in various industries	[5]	1	Understand
Q.2	a) Illustrate the spray layup process of composite material manufacturing with neat sketch along with its advantages, limitations, and applications.	[5]	2	Understand
	b) Illustrate the filament winding process of composite material manufacturing with neat sketch along with its advantages, limitations, and applications.	[5]	2	Understand
	c) Describe the pultrusion process of composite material manufacturing with neat sketch along with its advantages, limitations, and applications.	[5]	2	Understand
Q.3	a) Illustrate flexural test as per ASTM standard with neat sketch with respect to ASTM standards used, specimen dimensions with sketch, failure modes and acceptable failure patterns.	[5]	3	Understand
	b) Illustrate tensile test as per ASTM standard with neat sketch with respect to ASTM standards used, specimen dimensions with sketch, failure modes and acceptable failure patterns.	[5]	3	Understand
	c) Describe compression test as per ASTM standard with neat sketch with respect to ASTM standards used, specimen dimensions with sketch, failure modes and acceptable failure patterns.	[5]	3	Understand

Q.4 a) Proove the expression E_c	-FV+FV	[6]	4	
for Youngs Modulus of con	mposite laminate in terms of s of fiber and matrix based on	[5]	4	Apply
epoxy resin. Given: Modulus is 294 GPa and 5.6 Gpa	odulus and tensile strength of 9% carbon fibers by volume in and strength of carbon fiber respectively. Modulus and trix is 3.6 Gpa and 105 Mpa	[5]	4.,,	Apply
kevlar fibers. The total fibers unchanged at 0.5 Calcular fibers. Given E _{kevlar} = 220 G _F = 5.5 Gpa	class reinforced lamina is to be ome of the glass fibers with volume (kevlar+glass) remains the volume fraction of kevlar oa , $E_{glass} = 75 \text{ Gpa}$, E_{matrix}	[5]	4	Apply
orthotropic lamina in ter	n relation for two-dimensional cms of both stiffness and state the relations for each appliance matrix.	[5]	5	Apply
given below. Determine E_1 , lamina.	$[Q]$ an orthotropic lamina is E_2 , G_{12} and v_{12} of orthotropic	[5]	5	Apply
$[Q] = \begin{bmatrix} 132.00 \\ 5.04 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 5.04 & 0 \\ 25.19 & 0 \\ 0 & 7 \end{bmatrix}$ <i>GPa</i>			
transformed reduced stiffnes $[Q] = \begin{bmatrix} 30 \\ 1.4 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1.4 & 0 \\ 5 & 0 \\ 0 & 0.7 \end{bmatrix} GPa$	[5]	5	Apply
Q.6 a) Proove the expression for Theory (CLT) and formulate	or the Classical Lamination	[5]	. 6	Apply
$N_y = 1$ and with extensional s	$egin{array}{cccc} 4.34 & 0 \\ 101 & 0 \\ 0 & 10.7 \\ \end{array}$	[5]	6	Apply
c) Determine extensional stithree-ply $[0/\overline{90}]$ s lamina stiffness matrix $[\overline{Q}]$ for 0^0 are lamina is 0.004 thick.	ffness matrix [A] matrix for a ate . Transformed reduced at 90° are given below. Each	[5]	6	Apply
$[\bar{Q}]_0 = \begin{bmatrix} 18 & 2 & 0 \\ 2 & 10 & 0 \\ 0 & 0 & 7 \end{bmatrix} \qquad [\bar{Q}]$	$]_{90} = \begin{bmatrix} 10 & 2 & 0 \\ 2 & 18 & 0 \\ 0 & 0 & 7 \end{bmatrix}$			