Total No. of Printed Pages: 03

	PRN No. PAPER CODE V3)3-2111	(R
--	------------------------------	----

December 2023 (REEXAM)

TY (SEMESTER - I)

COURSE NAME: NUMERICAL METHODS Branch: MECHANICAL COURSE CODE: MEUA31201 (PATTERN 2020)

Time: [2 Hrs]

[Max. Marks: 60]

- (*) Instructions to candidates:
- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data wherever required
- 4) Allquestions are compulsory. Solve any two sub questions each from each Question 1,2,3,4,5, and 6 respectively

Q. No.	Question Description	Max.	CO	BT
Q. 110.	<i>Quantities</i> 1	Marks	mapped	Level
Q.1	a) Find the root of a given equation $f(x) = e^x \cos(x) - 1.4$ using	[5]	1	3
	the Bisection method, Carry out computations upto 2nd stage.			
	Assume root lies in the interval (3,5)	***		
	b) Find the roots of equation using Newton Raphson method	[5]	1	3
	up to one interaction $x^3 - 2x - 5 = 0$, take initial guess 2			
	c) The area of cross-section of a rod is desired up to 0.2% error.	[5]	1	3
	How accurately should the diameter be measured?			
Q.2	a) Using the Gauss elimination method with partial pivoting,	[5]	2	3 .
¥	solve the equations:			
	18.0x + 10.0y + 22.0z = 78.0;			
	2.0x + 0.0y + 13.0z = 58.0;			
	19.0x + 20.0y + 21.0z = 85.0	[5]	1 2	3
	b) Apply the Gauss-Seidal iteration method to solve the	ſοΊ		
	equations			
	1.3x + 0.8y + 0.3z = 25.0;		į.	
	0.3x + 1.7y + 0.3z = 50.0;			
	1.0x + 0.5y + 2.0z = 20.0			
i i	(take initial approximation = [0,0,0] and solution at 2nd stage)		 	
	c) Apply the Gauss-Seidal iteration method to solve the	[5]	2	3
	equations			
1	5.0x + 8.0y + 8.0z = 30.0			
	2.0x + 12.0y + 1.0z = 80.0			
}	3.0x + 10.0y + 2.0z = 37.0 (take initial approximation = [0,0,0] and solution at 2nd stage)		1	ļ
	a) Fit a straight line to the following data:	[5]	3	3
Q.3				
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$			
	given			
	$\sum(x)=15.000; \sum(y)=72.000; \sum(x^2)=55.000; \sum(xy)=246.000$			

	b) Using Newton 's forward difference interpolation, find the value of $f(1.3)$, if	[5]	3	3
	$egin{array}{c c c c c c c c c c c c c c c c c c c $			
	$NFDI\ Formula: y = y_1 + rac{\Delta_{11}}{1!}u + rac{\Delta_{12}}{2!}u(u-1) + rac{\Delta_{13}}{3!}u(u-1)(u-2) + \dots$			
	c) Fit a power equation $(y = ax^b)$ to the following data:	[5]	3	3
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$:		
	$y \mid 350.0 \mid 400.0 \mid 50.0 \mid 600.0 \mid 200.0$			
	given			
	$\sum (log(x)) = 4.540; \sum (log(y)) = 11.924;$			
	$\sum (log(x)^2) = 6.082; \sum (log(x)log(y)) = 10.995$	•		
Q.4	a) Evaluate the given integral by Gaussian Quadrature 2-	[5]	4	3
	point method.			
	$\int_{2}^{1} \frac{dx}{x^2 + 1}$			
	$\int_{0}^{1} x^{2} + 1$		į	
	b) Evaluate the given integral by Simpson's 1/3 rd rule.	[5]	4	3
	$\int_{0}^{\pi/2} e^{\sin(x)} dx$			
	$\int_{\Omega} e^{-ixx} dx$			
	c) Evaluate the given integral. (Assume n=m=4)	[5]	4	3
	$I = \int_{0}^{2} \int_{0}^{2} (x^{2} + y^{2} + 5) dx dy$			
Q.5	a) Employ Taylor's method to obtain approximate value of y at	[5]	5	3
	$x = 1.1$ for the differential equation $\frac{dy}{dx} = \log(xy)$, $y(1) = 2$.			
	b) Using the Runge-Kutta method of second order, solve for y	[5]	5	3
	at $x = 0.2$. From $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$, given $y(0) = 1$. (Take $h = 0.1$)		,	
	c) Using the 4th Order Runge-Kutta method, solve for y at $x = \frac{1}{2}$	[5]	5	3
	0.1. From $\frac{dy}{dx} = \frac{y-x}{y+x}$, given $y(0) = 1$. (Take $h = 0.1$)			
Q.6	a) Classify the equation:	[5]	6	3
	$5\frac{\partial^2 z}{\partial x^2} + 6\frac{\partial^2 z}{\partial y^2} = xy$			
	$\int \frac{\partial x^2}{\partial x^2} + \frac{\partial y^2}{\partial y^2} - \frac{\partial y}{\partial y}$			
	b) Given the values of $u(x,y)$ on the boundary of the square in	[5]	6	3
	the Figure 1, evaluate the function $u(x,y)$ satisfying the Laplace			
	equation at the pivotal points of this figure by Gauss-Seidel			
	method. (Show detail calculations for interaction no. 0, 1 and 2)	ı	E	

Note: [BT level- 1: Remember 2: Understand 3: Apply 4: Analyze 5: Evaluate 6: Create]