Total N	No. of	Questions -	[3]
---------	--------	-------------	-----

Total No. of Printed Pages: 2

G.R. No.	
	1

PAPER CODE U212-244 (ESE-DSY)

[Max. Marks: 30]

JULY 2023 (ENDSEM) EXAM

S.Y (E&TC) DSY (AY 2022-23 SEMESTER - I)

COURSE NAME: Digital System Design

COURSE CODE: ETUA21204

(PATTERN 2020)

Time: [1Hr]
(*) Instructions to candidates:

- 1) Use of scientific calculator is allowed
- 2) Use suitable data where ever required
- 3) All questions are compulsory

Question	Question Description	Marks	CO	Blooms		
No.			mapped	Taxonomy		
		1		Level		
Q.1 a	Show how an asynchronous counter with D flip-flops can be implemented having a modulus of thirteen with a straight binary sequence from 0000 through 1100. Draw the timing diagram for the same	4	CO4	Applying		
Q.1 b	Design a Mealy state machine for detecting a sequence bit stream of 110.	6	CO4	Applying		
OR						
Q1 c	Design a counter to produce the following binary sequence 1, 4, 3, 5, 7, 6, 2, 1. Use J-K flip-flops.	6	CO4	Applying		
Q.2 a	CMOS logic family is superior than bipolar families," Justify	4	CO5	Understand		

Q.2 b	Design 2 input TTL NAND gate and verify the truth table of it from your	6	CO5	Applying			
	design.	<u> </u>					
	OR						
Q.2 c	Using PLA realize the follow expressions:	6	CO5	Applying			
	F_1 (A, B, C) = $\sum m$ (0, 3, 4, 7) and F_2 (A, B, C) = $\sum m$ (0, 2, 4)						
	Optimize expressions using k-map	į					
	before implementation.						
企品的基础							
Q.3 a	Elaborate different Modeling styles used in VHDL.	4	CO6	Understand			
Q.3b			006				
Q.Sb	Elaborate test bench for 3 bit ALU design.	б.	CO6	Applying			
OR							
Q.3c	Design 2:1 multiplexer using any style of modelling	6	CO6	Applying			