PAPER CODE U212-234 (ESE-DSY)

July 2023 (ENDSEM) EXAM

S.Y. (AY 2022-23 SEMESTER - I)

COURSE NAME: Fundamentals of Data Structure

COURSE CODE: CSUA21204

(PATTERN 2020)

Time: [1Hr]

[Max. Marks: 30]

- (*) Instructions to candidates:
- 1) Use of scientific calculator is allowed
- 2) Use suitable data where ever required
- 3) All questions are compulsory

Question	Question Description	Max.	CO	BT
No.		Marks	mapped	Level
Q.1	a) Investigate the impact of using a dynamic array versus a linked list as the underlying data structure for a stack.		[4]	[Analyze]
	b) Illustrate stepwise stack contents for converting the following infix notation to postfix notation. ((8-(3+3)) * (3+(6/2))^2. Support your answer with appropriate pseudo code.	[6]	[4]	[Evaluate]
	OR			
	c) Evaluate the following postfix expression. Show all steps: ab*c+d-e+ where a=7, b=8, c=24, d=15 and e=5	[6]	[4]	[Evaluate]
Q.2	a) Simulate 'School admission ' as a Queue along with overflow and underflow condition. Provide required justification with suitable Java constructs. Analyze the time complexity of this program.	[4]	[5]	[Apply]
	b) Critically analyze the trade-offs involved in choosing between a bounded and an unbounded queue. Consider factors such	[6]	[5]	[Analyze]

• • • • • • • • • • • • • • • • • • • •				
	as memory utilization, scalability, and error			
	handling.			
	OR			
	c) Critique the design and implementation	[6]	[5]	[Analyze]
	of a circular queue data structure. Analyze			
	the benefits and potential challenges	,		
	associated with circular queues.			
Q.3	a) Write pseudo code for Binary search	[4]	[6]	[Apply]
	method. Explain with suitable example.			
	b) Implement the Merge Sort algorithm to	[6]	[6]	[Apply]
	sort an array of integers in ascending order.			
	Sort the following number's by applying			
	this algorithm			
	List: 15, 32, 8, 18, 42, 3	1		
	OR			
	c) The keys 12, 18, 13, 2, 3, 23, 5 and 15	[6]	[6]	[Apply]
	are inserted into an initially empty hash	1	,	
	table of length 10 using open addressing			}
	with hash function h(k) = k mod 10 and			
	linear probing. Apply hash table at every			
	step and get result.			

.

.