Total No. of Questions - [3]

Total No. of Printed Pages: 04

G.R. No.	

PAPER CODE U123-2038(R)59)

MAY 2023 (INSEM+ ENDSEM) EXAM F.Y. B. TECH. (SEMESTER - II)

COURSE NAME: BASIC ELECTRONICS ENGINEERING

COURSE CODE: ET10203B

(PATTERN 2020)

Time: [2Hr]

[Max. Marks: 60]

- (*) Instructions to candidates:
- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data where ever required

Ques tion No.		Question Description	Marks	CO mapp ed	Blooms Taxonomy Level
Q.1	i)	Solve the following If the a.c. input to a half-wave rectifier is an r.m.s value of 200/√2 volts, then diode PIV rating is	[2]	COI	Apply
		a) 200/√2 V c) 200 √2 V b) 400 V d) 200 V			
	ii)	Two LED's are connected in series along with limiting resistance. It is supplied with 10 V DC supply and drop across each LED is 2V, the value of limiting resistance for 10 mA current is	[2]	CO1	Apply
		a) 200 Ω b) 250 Ω c) 600 Ω d) 400 Ω			
	iii)	In RC phase shift oscillator producing output at $f = 500$ Hz, R = 7.5 Kohm then C =	[2]	CO1	Apply
		a) 0.01 micro F b) 0.017 micro F c) 0.012 nF d) 0.001 micro F			

iv)	For single phase supply frequency of 60 Hz, output signal frequency in full wave rectifier is	[2]	COI	Apply
	a) 25 Hz b) 50 Hz c) 120 Hz d) 200 Hz			
v)	Each diode in a center-tapped full-wave rectifier is of the input cycle.	[2]	CO1	Apply
	a) forward, 90 degree b) forward, 180 degree c) reverse, 90 degree d) reverse, 360 degree			
vi)	What is the average value of half wave rectifier, for Vp(out)= 50V a) 21.2 V b) 15 V	[2]	COI	Apply
	c) 15.9 V d) 19.9 V			
vii)	In Center tapped FWR, if the peak value of secondary voltage is 25 V then the peak value of the output voltage is	[2]	CO1	Apply
	a) 24.3 V c) 25.7 V b) 11.8 V d) 12.5 V			
viii)	The current flowing through the Photo diode without illumination of light in reverse bias mode is called as	[2]	COI	Understand
	a) reverse current b) dark current c) forward current d) pinch off current		,	
ix)	Determine value of collector current Ic, for β =180 and base current I _B = 340 μ A.	[2]	CO2	Apply
	a) 61.2 mA b) 46.8 mA c) 64.5 mA d) 80.3 mA			
x)	For voltage divider biasing circuit, if $R1 = 18 \text{ K}\Omega$, $R2 = 4 \text{ K}\Omega$, VCC=10V. What is the value of VB (voltage at Base terminal)?	[2]	CO2	Apply
	a) 2.07 V c) 10 V b) 1.81V d) 5.1 V			
xi)	A forward potential of $10V$ is applied to a Si diode. A resistance of $10 \text{ K}\Omega$ is also in series with the diode. The current is———— (Assume Si diode practical model)	[2]	CO2	Apply
	, present model)		1	1

	xii)	In voltage divider biasing circuit using BJT, if VE=2.42 V and RE=240 Ω , What is the value of emitter current IE?	[2]	CO2	Apply
		a) 10 mA c) 20 mA b) 25 mA d) 100 mA			
	xiii)	What is the total phase shift requirement for a RC phase-shift oscillator? a) 90° b) 180° c) 270° d) 360°	[2]	CO2	Apply
	xiv)	The biasing circuit has a stability factor of 24. If due to temperature change, ICBO changes by 3 μA, then IC will change by	[2]	CO2	Apply
	xv)	ix) Determine value of collector current Ic, for β =200 and base current I _B = 40 μ A. a) 8 Amp b)8000 mA c) 8 mA d) 80 μ A	[2]	CO2	Apply
Q2	a)	Solve any three out of four questions. Sketch the internal construction of an n-channel Enhancement type MOSFET and explain the pinch off process?	[5]	CO3	Understand
	b)	Draw voltage divider biasing CS amplifier circuit using n channel E-MOSFET and Explain the significance of coupling and bypass capacitors connected in the circuit.	[5]	CO3	Understand
		Calculate V_{GS} and V_{DS} for the MOSFET with voltage divider bias circuit, given parameters are R_1 = 150 K Ω , R_2 = 20 K Ω , R_D = 200 Ω , V_{DD} = 24 V. Assume this particular MOSFET has minimum values of $I_{(on)}$ = 200 mA at V_{GS} = 4 V and $V_{GS(th)}$ = 2 V.	[5]	CO3	Apply
	d)	Sketch the forward characteristics of SCR for different values of gate current and explain turn on process of it.	[5]	CO3	Understand
2.3		Solve any three out of four questions. Explain the following terms related to a differential amplifier with necessary diagrams i) Virtual ground ii) Slew Rate	[5]	CO4	Understand
		3			

b)	Compare between Inverting and Non-inverting amplifier configurations of an op-amp.	[5]	CO4	,,,,,
	configurations of all op-allip.	[5]	CO4	Understand
c)	Calculate closed loop gain of the circuit shown below and find out its output voltage if 3V DC input is applied to the circuit. $Rf = 60K\Omega$ $Rin = 20K\Omega$ V_{en} V_{en}	[5]	CO4	Apply
d)	If 3 input voltages 100my: 200my and 300my are applied at			•
	inverting terminal. Find the output voltage. 100k 10 K 100k 10 K 20 K 200mv 40K 300mv	[5]	CO4	Apply

.